Joint Digital Signal Processing Receivers for Spatial Superchannels

We discuss the advantages of spatial superchannels for future terabit networks based on space-division multiplexing (SDM), and demonstrate reception of spatial superchannels by a coherent receiver utilizing joint digital signal processing (DSP). In a spatial superchannel, the SDM modes at a given wavelength are routed together, allowing a simplified design of both transponders and optical routing equipment. For example, common-mode impairments can be exploited to streamline the receiver's DSP. Our laboratory measurements reveal that the phase fluctuations between the cores of a multicore fiber are strongly correlated, and therefore constitute such a common-mode impairment. We implement master-slave phase recovery of two simultaneous 112-Gbps subchannels in a seven-core fiber, demonstrating reduced processing complexity with no increase in the bit-error ratio. Furthermore, we investigate the feasibility of applying this technique to subchannels carried on separate single-mode fibers, a potential transition strategy to evolve today's fiber networks toward future networks using multicore fibers.

[1]  S. Chandrasekhar,et al.  WDM/SDM transmission of 10 × 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 kmb/s/Hz , 2011, 2011 37th European Conference and Exhibition on Optical Communication.

[2]  Ting Wang,et al.  64-Tb/s, 8 b/s/Hz, PDM-36QAM Transmission Over 320 km Using Both Pre- and Post-Transmission Digital Signal Processing , 2011, Journal of Lightwave Technology.

[3]  T. Morioka New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond , 2009, 2009 14th OptoElectronics and Communications Conference.

[4]  William Shieh,et al.  Reception of mode and polarization multiplexed 107-Gb/s CO-OFDM signal over a two-mode fiber , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[5]  P. Winzer Energy-Efficient Optical Transport Capacity Scaling Through Spatial Multiplexing , 2011, IEEE Photonics Technology Letters.

[6]  M. Fishteyn,et al.  Demonstration of joint DSP receivers for spatial superchannels , 2012, 2012 IEEE Photonics Society Summer Topical Meeting Series.

[7]  D.F. Welch,et al.  Electronically tunable, 1-W CW, near-diffraction-limited monolithic flared amplifier-master oscillator power amplifier (MFA-MOPA) , 1994, IEEE Photonics Technology Letters.

[8]  B. Zhu,et al.  Seven-core multicore fiber transmissions for passive optical network. , 2010, Optics express.

[9]  T. Kawanishi,et al.  109-Tb/s (7×97×172-Gb/s SDM/WDM/PDM) QPSK transmission through 16.8-km homogeneous multi-core fiber , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[10]  Massimiliano Salsi,et al.  Transmission at 2×100Gb/s, over two modes of 40km-long prototype few-mode fiber, using LCOS-based mode multiplexer and demultiplexer , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[11]  M. Koshiba,et al.  Reduction of crosstalk by quasi-homogeneous solid multi-core fiber , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[12]  A. Gnauck,et al.  MIMO-Based Crosstalk Suppression in Spatially Multiplexed 3$\,\times \,$56-Gb/s PDM-QPSK Signals for Strongly Coupled Three-Core Fiber , 2011, IEEE Photonics Technology Letters.