A Short Proof of the Random Ramsey Theorem

In this paper we give a short proof of the Random Ramsey Theorem of Rödl and Ruciński: for any graph F which contains a cycle and r ≥ 2, there exist constants c, C > 0 such that P[Gn,p → (F )r] = { 1− o(1), p ≥ Cn−1/m2(F ) o(1), p ≤ cn−1/m2(F , where m2(F ) = maxJ⊆F,vJ≥2 eJ−1 vJ−2 . The proof of the 1-statement is based on the recent beautiful hypergraph container theorems by Saxton/Thomason and Balogh/Morris/Samotij. The proof of the 0-statement is elementary.

[1]  Vojtech Rödl,et al.  Random Graphs with Monochromatic Triangles in Every Edge Coloring , 1994, Random Struct. Algorithms.

[2]  P. Erdos,et al.  On the evolution of random graphs , 1984 .

[3]  Angelika Steger,et al.  Asymmetric Ramsey properties of random graphs involving cliques , 2009, Random Struct. Algorithms.

[4]  J. Balogh,et al.  Independent sets in hypergraphs , 2012, 1204.6530.

[5]  Andrzej Rucinski,et al.  Ramsey properties of random graphs , 1992, J. Comb. Theory, Ser. B.

[6]  B. Bollobás The evolution of random graphs , 1984 .

[7]  Luca Gugelmann,et al.  A Randomized Version of Ramsey's Theorem , 2011, Electron. Notes Discret. Math..

[8]  W. T. Gowers,et al.  Combinatorial theorems in sparse random sets , 2010, 1011.4310.

[9]  Vojtech Rödl,et al.  Ramsey properties of random discrete structures , 2010, Random Struct. Algorithms.

[10]  V. Rödl,et al.  Threshold functions for Ramsey properties , 1995 .

[11]  D. Saxton,et al.  Hypergraph containers , 2012, 1204.6595.

[12]  Zhongfu Zhang,et al.  A short proof of Nash-Williams' theorem for the arboricity of a graph , 1994, Graphs Comb..