Traveling in randomly embedded random graphs

We consider the problem of traveling among random points in Euclidean space, when only a random fraction of the pairs are joined by traversable connections. In particular, we show a threshold for a pair of points to be connected by a geodesic of length arbitrarily close to their Euclidean distance, and analyze the minimum length Traveling Salesperson Tour, extending the Beardwood-Halton-Hammersley theorem to this setting.

[1]  Richard M. Karp,et al.  Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane , 1977, Math. Oper. Res..

[2]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[3]  J. Yukich Probability theory of classical Euclidean optimization problems , 1998 .

[4]  Béla Bollobás,et al.  Random Graphs, Second Edition , 2001, Cambridge Studies in Advanced Mathematics.

[5]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[6]  Alan M. Frieze On large matchings and cycles in sparse random graphs , 1986, Discret. Math..

[7]  Vijaya Ramachandran,et al.  The diameter of sparse random graphs , 2007, Random Struct. Algorithms.

[8]  A. Frieze,et al.  Introduction to Random Graphs , 2016 .

[9]  J. Dall,et al.  Random geometric graphs. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Saharon Shelah,et al.  Expected Computation Time for Hamiltonian Path Problem , 1987, SIAM J. Comput..

[11]  B. Bollobás,et al.  An algorithm for finding hamilton paths and cycles in random graphs , 1987 .

[12]  Nicholas C. Wormald,et al.  On the Stretch Factor of Randomly Embedded Random Graphs , 2013, Discret. Comput. Geom..

[13]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[14]  J. Steele Subadditive Euclidean Functionals and Nonlinear Growth in Geometric Probability , 1981 .

[15]  Wansoo T. Rhee,et al.  A sharp deviation inequality for the stochastic traveling salesman problem , 1989 .

[16]  E. Upfal,et al.  On factors in random graphs , 1981 .

[17]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..

[18]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[19]  Alan M. Frieze,et al.  A Geometric Preferential Attachment Model of Networks , 2004, WAW.

[20]  V. Ramachandran,et al.  The diameter of sparse random graphs , 2007 .

[21]  Abbas Mehrabian A Randomly Embedded Random Graph is Not a Spanner , 2011, CCCG.

[22]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[23]  J. Beardwood,et al.  The shortest path through many points , 1959, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  Alan M. Frieze,et al.  A Geometric Preferential Attachment Model of Networks , 2006, Internet Math..