Resonance vibrational Raman optical activity: a time-dependent density functional theory approach.

We present a method to calculate both on- and off-resonance vibrational Raman optical activities (VROAs) of molecules using time-dependent density functional theory. This is an extension of a method to calculate the normal VROA by including a finite lifetime of the electronic excited states in all calculated properties. The method is based on a short-time approximation to Raman scattering and is, in the off-resonance case, identical to the standard theory of Placzek. The normal and resonance VROA spectra are calculated from geometric derivatives of the different generalized polarizabilites obtained using linear response theory which includes a damping term to account for the finite lifetime. Gauge-origin independent results for normal VROA have been ensured using either the modified-velocity gauge or gauge-included atomic orbitals. For the resonance VROA only the modified-velocity gauge has been implemented. We present some initial results for H(2)O(2) and (S)-methyloxirane and compare with predictions from a simple two-state approximation.

[1]  P. Bouř Matrix formulation of the surface-enhanced Raman optical activity theory. , 2007, The Journal of chemical physics.

[2]  J. Haesler,et al.  Absolute configuration of chirally deuterated neopentane , 2007, Nature.

[3]  G. Schatz,et al.  Size-dependence of the enhanced Raman scattering of pyridine adsorbed on Agn (n = 2-8, 20) clusters , 2007 .

[4]  J. Autschbach,et al.  Calculation of static and dynamic linear magnetic response in approximate time-dependent density functional theory. , 2007, The Journal of chemical physics.

[5]  S. Abdali Observation of SERS effect in Raman optical activity, a new tool for chiral vibrational spectroscopy , 2006 .

[6]  George C Schatz,et al.  TDDFT studies of absorption and SERS spectra of pyridine interacting with Au20. , 2006, The journal of physical chemistry. A.

[7]  L. Barron Structure and behaviour of biomolecules from Raman optical activity. , 2006, Current opinion in structural biology.

[8]  Benjamin G. Janesko,et al.  Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: theory of electromagnetic effects. , 2006, The Journal of chemical physics.

[9]  J. Autschbach,et al.  Calculation of origin-independent optical rotation tensor components in approximate time-dependent density functional theory. , 2006, The Journal of chemical physics.

[10]  G. Schatz,et al.  Surface-enhanced raman scattering of pyrazine at the junction between two Ag20 nanoclusters. , 2006, Nano letters.

[11]  George C Schatz,et al.  Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. , 2006, The journal of physical chemistry. A.

[12]  G. Schatz,et al.  Pyridine-Ag20 cluster: a model system for studying surface-enhanced Raman scattering. , 2006, Journal of the American Chemical Society.

[13]  G. Schatz,et al.  Time-dependent density functional calculations of optical rotatory dispersion including resonance wavelengths as a potentially useful tool for determining absolute configurations of chiral molecules. , 2006, The journal of physical chemistry. A.

[14]  K. Kneipp,et al.  Surface-enhanced Raman optical activity on adenine in silver colloidal solution. , 2006, Analytical chemistry.

[15]  T. Spiro,et al.  Protein secondary structure from deep-UV resonance Raman spectroscopy† , 2006 .

[16]  Lutz Hecht,et al.  Raman optical activity of proteins, carbohydrates and glycoproteins. , 2006, Chirality.

[17]  G. Schatz,et al.  Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives. , 2005, The Journal of chemical physics.

[18]  Lutz Hecht,et al.  Raman optical activity: a tool for protein structure analysis. , 2005, Structure.

[19]  J. Autschbach,et al.  Calculation of optical rotation with time-periodic magnetic-field-dependent basis functions in approximate time-dependent density-functional theory. , 2005, The Journal of chemical physics.

[20]  K. Ruud,et al.  Basis set and density functional dependence of vibrational Raman optical activity calculations. , 2005, The journal of physical chemistry. A.

[21]  L Jensen,et al.  Finite lifetime effects on the polarizability within time-dependent density-functional theory. , 2005, The Journal of chemical physics.

[22]  Steen Brøndsted Nielsen,et al.  Tunable kHz Deep Ultraviolet (193–210 nm) Laser for Raman Applications , 2005, Applied spectroscopy.

[23]  J. Autschbach,et al.  Calculation of Verdet constants with time-dependent density functional theory: implementation and results for small molecules. , 2005, The Journal of chemical physics.

[24]  J. Linderberg,et al.  Propagators in Quantum Chemistry: Linderberg/Quantum Chemistry , 2005 .

[25]  I. Lednev,et al.  Deep-UV Raman spectrometer tunable between 193 and 205 nm for structural characterization of proteins , 2005, Analytical and bioanalytical chemistry.

[26]  H. Koch,et al.  Origin invariant calculation of optical rotation without recourse to London orbitals , 2004 .

[27]  E. Blanch,et al.  Raman optical activity comes of age , 2004 .

[28]  W. Hug,et al.  Rarefied Basis Sets for the Calculation of Optical Tensors. 1. The Importance of Gradients on Hydrogen Atoms for the Raman Scattering Tensor , 2004 .

[29]  J. Linderberg,et al.  Propagators in quantum chemistry , 2004 .

[30]  A. Rizzo,et al.  Raman optical activity spectra: basis set and electron correlation effects , 2003 .

[31]  Quantum Chemical Calculation of Raman Intensities for Large Molecules: The Photoisomerization of [{Fe‘S4’(PR3)}2(N2H2)] (‘S4’2− = 1,2-bis(2-Mercaptophenylthio)-Ethane(2−)) , 2003 .

[32]  S. Grimme,et al.  An improved method for density functional calculations of the frequency-dependent optical rotation , 2002 .

[33]  P. Bouř,et al.  Gauge-Origin Independent Density-Functional Theory Calculations of Vibrational Raman Optical Activity , 2002 .

[34]  Evert Jan Baerends,et al.  Chiroptical properties from time-dependent density functional theory. I. Circular dichroism spectra of organic molecules , 2002 .

[35]  J. Chalmers,et al.  Handbook of vibrational spectroscopy , 2002 .

[36]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[37]  J. G. Snijders,et al.  Implementation of time-dependent density functional response equations , 1999 .

[38]  Evert Jan Baerends,et al.  Calculating frequency-dependent hyperpolarizabilities using time-dependent density functional theory , 1998 .

[39]  L. Nafie,et al.  Experimental observation of resonance Raman optical activity , 1998 .

[40]  X. G. Chen,et al.  UV resonance Raman-selective amide vibrational enhancement: quantitative methodology for determining protein secondary structure. , 1998, Biochemistry.

[41]  A. Myers Molecular electronic spectral broadening in liquids and glasses. , 1998, Annual review of physical chemistry.

[42]  L. Barron,et al.  Absolute Configuration of Bromochlorofluoromethane from Experimental and Ab Initio Theoretical Vibrational Raman Optical Activity , 1997 .

[43]  L. Nafie Theory of resonance Raman optical activity: the single electronic state limit , 1996 .

[44]  Evert Jan Baerends,et al.  A density-functional theory study of frequency-dependent polarizabilities and Van der Waals dispersion coefficients for polyatomic molecules , 1995 .

[45]  J. Olsen,et al.  Vibrational Raman optical activity calculations using London atomic orbitals , 1994 .

[46]  Mark A. Ratner,et al.  Quantum Mechanics in Chemistry , 1993 .

[47]  R. Boyd Chapter 1 – The Nonlinear Optical Susceptibility , 1992 .

[48]  Prasad L. Polavarapu,et al.  Ab initio vibrational Raman and Raman optical activity spectra , 1990 .

[49]  Sanford A. Asher,et al.  UV resonance Raman studies of peptide conformation in poly(L-lysine), poly(L-glutamic acid), and model complexes: the basis for protein secondary structure determinations , 1989 .

[50]  S. Mukamel,et al.  Raman excitation profiles of polyatomic molecules in condensed phases. A stochastic theory , 1986 .

[51]  S. Efrima Raman optical activity of molecules adsorbed on metal surfaces: Theory , 1985 .

[52]  Thomas G. Spiro,et al.  Ultraviolet resonance Raman spectroscopy of the nucleotides with 266-, 240-, 218-, and 200-nm pulsed laser excitation , 1985 .

[53]  A. Gedanken,et al.  EXCITED ELECTRONIC STATES OF OPTICALLY ACTIVE SUBSTITUTED ETHYLENE OXIDES: (-)-(S)-2-METHYLOXIRANE AND (-)-(S,S)-2,3-DIMETHYLOXIRANE , 1983 .

[54]  Laurence D. Barron,et al.  Molecular Light Scattering and Optical Activity: Second Edition, revised and enlarged , 1983 .

[55]  Soo-Y. Lee Placzek‐type polarizability tensors for Raman and resonance Raman scattering , 1983 .

[56]  E. Heller,et al.  Polyatomic Raman scattering for general harmonic potentials , 1982 .

[57]  E. Heller,et al.  Simple aspects of Raman scattering , 1982 .

[58]  Soo-Y. Lee Semiclassical theory of radiation interacting with a molecule , 1982 .

[59]  J. M. Schulman,et al.  A polarizability theory of the resonance Raman effect , 1981 .

[60]  E. Heller,et al.  Time‐dependent theory of Raman scattering , 1979 .

[61]  R. Detrano,et al.  Semiclassical theory of vibrational Raman intensities , 1974 .

[62]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[63]  R. Detrano,et al.  Inclusion of Nuclear Motion in Calculations of Optical Properties of Diatomic Molecules , 1972 .

[64]  F. London,et al.  Théorie quantique des courants interatomiques dans les combinaisons aromatiques , 1937 .