Extreme value theory and return time statistics for dispersing billiard maps and flows, Lozi maps and Lorenz-like maps

Abstract In this paper we establish extreme value statistics for observations on a class of hyperbolic systems: planar dispersing billiard maps and flows, Lozi maps and Lorenz-like maps. In particular, we show that for time series arising from Hölder observations on these systems which are maximized at generic points the successive maxima of the time series are distributed according to the corresponding extreme value distributions for independent identically distributed processes. These results imply an exponential law for the hitting and return time statistics of these dynamical systems.

[1]  Ana Cristina Moreira Freitas,et al.  Extreme Value Laws in Dynamical Systems for Non-smooth Observations , 2010, 1006.3276.

[2]  Dmitry Dolgopyat,et al.  Limit theorems for partially hyperbolic systems , 2003 .

[3]  L. Young,et al.  STATISTICAL PROPERTIES OF DYNAMICAL SYSTEMS WITH SOME HYPERBOLICITY , 1998 .

[4]  N. Haydn,et al.  Hitting and return times in ergodic dynamical systems , 2004, math/0410384.

[5]  Anatole Katok,et al.  Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities , 1986 .

[6]  P. Collet,et al.  Ergodic properties of the Lozi mappings , 1984 .

[7]  Ana Cristina Moreira Freitas,et al.  Extreme values for Benedicks–Carleson quadratic maps , 2007, Ergodic Theory and Dynamical Systems.

[8]  R. F. Williams,et al.  The structure of Lorenz attractors , 1979 .

[9]  W. Kyner Invariant Manifolds , 1961 .

[10]  Michał Misiurewicz,et al.  STRANGE ATTRACTORS FOR THE LOZI MAPPINGS , 1980 .

[11]  Leonid A. Bunimovich,et al.  Statistical properties of two-dimensional hyperbolic billiards , 1991 .

[12]  Decay of correlations for non-Hölder observables , 2004, math/0401432.

[13]  Lai-Sang Young,et al.  Markov Extensions and Decay of Correlations for Certain Hénon Maps , 2000, Astérisque.

[14]  N. Chernov Decay of Correlations and Dispersing Billiards , 1999 .

[15]  Ian Melbourne,et al.  The Lorenz Attractor is Mixing , 2005 .

[16]  P. Mattila Geometry of Sets and Measures in Euclidean Spaces: Fractals and Rectifiability , 1995 .

[17]  J. D. T. Oliveira,et al.  The Asymptotic Theory of Extreme Order Statistics , 1979 .

[18]  Pierre Collet,et al.  Statistics of closest return for some non-uniformly hyperbolic systems , 1999, Ergodic Theory and Dynamical Systems.

[19]  Robert Dewar,et al.  Non-linear dynamics , 2000 .

[20]  Warwick Tucker,et al.  Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .

[21]  L. Young Bowen-Ruelle measures for certain piecewise hyperbolic maps , 1985 .

[22]  Jorge Milhazes Freitas,et al.  On the link between dependence and independence in extreme value theory for dynamical systems , 2008 .

[23]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[24]  W. Tucker The Lorenz attractor exists , 1999 .

[25]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[26]  Matthew Nicol,et al.  Large deviations for nonuniformly hyperbolic systems , 2008 .

[27]  R. F. Williams,et al.  Structural stability of Lorenz attractors , 1979 .

[28]  Ana Cristina Moreira Freitas,et al.  Hitting time statistics and extreme value theory , 2008, 0804.2887.

[29]  R. Cooke Real and Complex Analysis , 2011 .

[30]  Yakov Pesin,et al.  Dimension and product structure of hyperbolic measures , 1999 .

[31]  Ben Parker Chaotic Billiards , 2006 .

[32]  L. Bunimovich,et al.  Markov partitions for two-dimensional hyperbolic billiards , 1990 .

[33]  A. Török,et al.  Extreme value distributions for non-uniformly hyperbolic dynamical systems ∗ , 2008 .

[34]  M. R. Leadbetter,et al.  Extremes and Related Properties of Random Sequences and Processes: Springer Series in Statistics , 1983 .

[35]  M. Hirata,et al.  Poisson law for Axiom A diffeomorphisms , 1993, Ergodic Theory and Dynamical Systems.

[36]  V. Baladi Positive transfer operators and decay of correlations , 2000 .

[37]  N. Ng,et al.  Extreme values of ζ′(ρ) , 2007, 0706.1765.