The fractal property of the Lorenz attractor
暂无分享,去创建一个
[1] Divakar Viswanath,et al. Symbolic dynamics and periodic orbits of the Lorenz attractor* , 2003 .
[2] Konstantin Mischaikow,et al. Topological techniques for efficient rigorous computation in dynamics , 2002, Acta Numerica.
[3] K. Mischaikow,et al. Chaos in the Lorenz Equations: A Computer Assisted Proof Part III: Classical Parameter Values , 1995, math/9501230.
[4] Grebogi,et al. Unstable periodic orbits and the dimensions of multifractal chaotic attractors. , 1988, Physical review. A, General physics.
[5] E. Lorenz,et al. The essence of chaos , 1993 .
[6] John Guckenheimer,et al. A Strange, Strange Attractor , 1976 .
[7] Mei Han An,et al. accuracy and stability of numerical algorithms , 1991 .
[8] Steven H. Strogatz,et al. Nonlinear Dynamics and Chaos , 2024 .
[9] E. Lorenz. Deterministic nonperiodic flow , 1963 .
[10] K. Mischaikow,et al. Chaos in the Lorenz equations: a computer-assisted proof , 1995, math/9501230.
[11] Gregor Tanner,et al. Classical and Quantum Chaos , 2001 .
[12] Divakar Viswanath,et al. The Lindstedt-Poincaré Technique as an Algorithm for Computing Periodic Orbits , 2001, SIAM Rev..
[13] Erik Aurell,et al. Recycling of strange sets: I. Cycle expansions , 1990 .
[14] Claudio Giberti,et al. Characterization of the Lorentz attractor by unstable periodic orbits , 1993 .
[15] G. Stewart. Introduction to matrix computations , 1973 .
[16] R. F. Williams,et al. The structure of Lorenz attractors , 1979 .
[17] Warwick Tucker,et al. Foundations of Computational Mathematics a Rigorous Ode Solver and Smale's 14th Problem , 2022 .
[18] Bruno Eckhardt,et al. Periodic orbit analysis of the Lorenz attractor , 1994 .
[19] G. Sell,et al. The Hopf Bifurcation and Its Applications , 1976 .
[20] Auerbach,et al. Exploring chaotic motion through periodic orbits. , 1987, Physical review letters.