Electricity from the Silk Cocoon Membrane

Silk cocoon membrane (SCM) is an insect engineered structure. We studied the electrical properties of mulberry (Bombyx mori) and non-mulberry (Tussar, Antheraea mylitta) SCM. When dry, SCM behaves like an insulator. On absorbing moisture, it generates electrical current, which is modulated by temperature. The current flowing across the SCM is possibly ionic and protonic in nature. We exploited the electrical properties of SCM to develop simple energy harvesting devices, which could operate low power electronic systems. Based on our findings, we propose that the temperature and humidity dependent electrical properties of the SCM could find applications in battery technology, bio-sensor, humidity sensor, steam engines and waste heat management.

[1]  Fujia Chen,et al.  Structure and physical properties of silkworm cocoons , 2012, Journal of The Royal Society Interface.

[2]  R. Hartland-Rowe The biology of the wild silk moth Gonometa rufobrunnea Aurivillius (Lasiocampidae) in northeastern Botswana, with some comments on its potential as a source of wild silk , 1992 .

[3]  H. Akai,et al.  Calcium crystals of cocoon shell from African Gonometa silkmoth (Lasiocampidae) , 2003 .

[4]  C. Scholtz,et al.  Can life‐history and defence traits predict the population dynamics and natural enemy responses of insect herbivores? , 2007 .

[5]  R. Edwards Social Wasps: Their Biology and Control , 1980 .

[6]  L. Trouvelot The American Silk Worm , 1867, The American Naturalist.

[7]  Jinrong Yao,et al.  Kinetics of thermally-induced conformational transitions in soybean protein films , 2010 .

[8]  K. Pitzer,et al.  The Nature of the Chemical Bond and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry. , 1960 .

[9]  E. Döhring,et al.  Die sozialen Faltenwespen Mitteleuropas , 1967 .

[10]  Xungai Wang,et al.  Silkworm cocoon as natural material and structure for thermal insulation , 2013 .

[11]  R. Lewis,et al.  Structural studies of spider silk proteins in the fiber , 1997, Journal of molecular recognition : JMR.

[12]  Z. Shao,et al.  Moisture Effects on Antheraea pernyi Silk's Mechanical Property , 2009 .

[13]  T. Seydel,et al.  Increased molecular mobility in humid silk fibers under tensile stress. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  D. Porter,et al.  Water mediated proton hopping empowers proteins , 2013 .

[15]  E. Treiber,et al.  Ultraviolett-Absorptionsspektren von Seidenfibroin und Cellulose in Lithiumbromidlösung , 1954 .

[16]  H. Akai Anti-bacteria function of natural silk materials , 1997 .

[17]  A. S. Packard A text-book of entomology, including the anatomy, physiology, embryology and metamorphoses of insects, for use in agricultural and technical schools and colleges as well as by the working entomologist, by Alpheus S. Packard ... , 1898 .

[18]  W. Doster The dynamical transition of proteins, concepts and misconceptions , 2008, European Biophysics Journal.

[19]  Oskar Liivak,et al.  Supercontraction and Backbone Dynamics in Spider Silk: 13C and 2H NMR Studies , 2000 .

[20]  J. Ishay,et al.  Silk produced by hornets: thermophotovoltaic properties-a review. , 2000, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[21]  Thomas Scheibel,et al.  Silk‐based materials for biomedical applications , 2010, Biotechnology and applied biochemistry.

[22]  B. Fung,et al.  An improved broadband decoupling sequence for liquid crystals and solids. , 2000, Journal of magnetic resonance.

[23]  S. Prasong,et al.  Screening of Some Elements in Different Silk Cocoon Varieties , 2010 .

[24]  P. Ball Water as an active constituent in cell biology. , 2008, Chemical reviews.

[25]  K. Gaston,et al.  Changing size and changing enemies: the case of the mopane worm , 1997 .

[26]  W. Burggren,et al.  The silk cocoon of the silkworm, Bombyx mori: macro structure and its influence on transmural diffusion of oxygen and water vapor. , 2010, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[27]  G. Plaza,et al.  Thermo‐hygro‐mechanical behavior of spider dragline silk: Glassy and rubbery states , 2006 .

[28]  T. Asakura,et al.  13C CP/MAS NMR study on structural heterogeneity in Bombyx mori silk fiber and their generation by stretching , 2002, Protein science : a publication of the Protein Society.

[29]  Xi-Qiao Feng,et al.  Mechanical properties of silkworm cocoons , 2005 .

[30]  A. Himmer DIE TEMPERATURVERHÄLTNISSE BEI DEN SOZIALEN HYMENOPTEREN , 1932 .

[31]  J. Ishay,et al.  Thermophotovoltaic (TPV) properties of hornet cuticle as dependent on relative humidity. , 2000, Physiological chemistry and physics and medical NMR.

[32]  S. Takahashi,et al.  Crystals from Cocoons of Malacosoma neustria testacea , 1968, Science.

[33]  A. Pines,et al.  Proton‐Enhanced Nuclear Induction Spectroscopy. A Method for High Resolution NMR of Dilute Spins in Solids , 1972 .

[34]  Fujia Chen,et al.  Silkworm cocoons inspire models for random fiber and particulate composites. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Dietmar W. Hutmacher,et al.  Design and Fabrication of Tubular Scaffolds via Direct Writing in a Melt Electrospinning Mode , 2012, Biointerphases.

[36]  E. J. M. Evesham Social Insects: Ecology and Behavioural Biology, M.V. Brian. Chapman & Hall, London (1983), x, +377. Price £25.00 hardback, £12.95 paperback , 1985 .

[37]  S. K. Meena,et al.  Graphene oxide from silk cocoon: a novel magnetic fluorophore for multi-photon imaging , 2013, 3 Biotech.

[38]  J. Spradbery Vespoidea. (Book Reviews: Wasps. An Account of the Biology and Natural History of Solitary and Social Wasps) , 1973 .

[39]  H. Danks The roles of insect cocoons in cold conditions , 2004 .

[40]  R. W. Work,et al.  A Physico-Chemical Study of the Supercontraction of Spider Major Ampullate Silk Fibers , 1982 .

[41]  C. Scholtz,et al.  Fine-scale abundance and distribution of wild silk moth pupae , 2007, Bulletin of Entomological Research.

[42]  C. Scholtz,et al.  Variability in cocoon size in southern African wild silk moths: implications for sustainable harvesting , 2002 .

[43]  D. Teigler,et al.  Biological Sciences: X-ray Diffraction and Fine Structural Studies of Crystals in the Malpighian Tubules of Silkworms , 1972, Nature.

[44]  Fritz Vollrath,et al.  Thermally induced changes in dynamic mechanical properties of native silks. , 2013, Biomacromolecules.

[45]  F. Vollrath,et al.  The Role of Behavior in the Evolution of Spiders, Silks, and Webs , 2007 .

[46]  Z. Shao,et al.  Effect of pH and copper(II) on the conformation transitions of silk fibroin based on EPR, NMR, and Raman spectroscopy. , 2004, Biochemistry.

[47]  David L. Kaplan,et al.  From Silk Cocoon to Medical Miracle , 2010 .

[48]  A. R. Berens,et al.  Diffusion and relaxation in glassy polymer powders: 2. Separation of diffusion and relaxation parameters , 1978 .

[49]  Fritz Vollrath,et al.  The silkmoth cocoon as humidity trap and waterproof barrier. , 2013, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[50]  D. Porter,et al.  Water mobility, denaturation and the glass transition in proteins. , 2012, Biochimica et biophysica acta.

[51]  J. Ishay,et al.  Thermoelectric effect in hornet (Vespa orientalis) silk and thermoregulation in a hornet's nest , 1995 .

[52]  Z. Shao,et al.  Copper in the silk formation process of Bombyx mori silkworm , 2003, FEBS letters.

[53]  Xungai Wang,et al.  Photoprotection by silk cocoons. , 2013, Biomacromolecules.

[54]  Fritz Vollrath,et al.  Materials: Surprising strength of silkworm silk , 2002, Nature.

[55]  M. Karlsson,et al.  Pore structure in supermacroporous polyacrylamide based cryogels. , 2005, Soft matter.

[56]  I. Ando,et al.  Intermolecular hydrogen-bonding effect on carbon-13 NMR chemical shifts of glycine residue carbonyl carbons of peptides in the solid state , 1988 .

[57]  Richard J. Farris,et al.  Effect of moisture absorption on the thermal properties of Bombyx mori silk fibroin films , 1997 .

[58]  J. Yarger,et al.  WISE NMR characterization of nanoscale heterogeneity and mobility in supercontracted Nephila clavipes spider dragline silk. , 2004, Journal of the American Chemical Society.

[59]  David L. Kaplan,et al.  Effect of water on the thermal properties of silk fibroin , 2007 .

[60]  Y. Ooshika,et al.  Proton Transfer in Hydrogen Bond and Its Participation in π-Electron Systems , 1955 .

[61]  Sunil Kumar Meena,et al.  Carbondioxide Gating in Silk Cocoon , 2012, Biointerphases.

[62]  G. Cao,et al.  Effect of Pore Morphology on the Electrochemical Properties of Electric Double Layer Carbon Cryogel Supercapacitors , 2008 .

[63]  D. Porter,et al.  The role of kinetics of and amide bonding in protein stability. , 2008, Soft matter.

[64]  F. Ruttner,et al.  Thermoregulation im Hornissennest , 1971, Zeitschrift für vergleichende Physiologie.

[65]  Fritz Vollrath,et al.  Liquid crystalline spinning of spider silk , 2001, Nature.

[66]  A. Collins,et al.  Demineralization enables reeling of wild silkmoth cocoons. , 2011, Biomacromolecules.

[67]  Fritz Vollrath,et al.  Changes in element composition along the spinning duct in a Nephila spider , 2001, Naturwissenschaften.

[68]  G. Tsujimoto,et al.  The silkworm Green b locus encodes a quercetin 5-O-glucosyltransferase that produces green cocoons with UV-shielding properties , 2010, Proceedings of the National Academy of Sciences.

[69]  M. Hansell Biology of the Vespine Wasps, Bakoto Matsuura, Seiki Yamane. Springer-Verlag, Berlin (1990), xix, +323. Price DM 198 , 1991 .

[70]  R. Veldtman The ecology of southern African wild silk moths (Gonometa species, Lepidoptera: Lasiocampidae): consequences for their sustainable use , 2007 .

[71]  H. Saito,et al.  A high‐resolution 13C‐nmr study of collagenlike polypeptides and collagen fibrils in solid state studied by the cross‐polarization–magic angle‐spinning method. Manifestation of conformation‐dependent 13C chemical shifts and application to conformational characterization , 1984, Biopolymers.

[72]  N. Sethy,et al.  Fluorescent silk cocoon creating fluorescent diatom using a “Water glass-fluorophore ferry” , 2013, Scientific Reports.

[73]  Fritz Vollrath,et al.  Spider Webs and Silks. , 1992 .