The TOI-763 system: sub-Neptunes orbiting a Sun-like star

We report the discovery of a planetary system orbiting TOI-763(aka CD-39 7945), a V = 10.2, high proper motion G-type dwarf star that was photometrically monitored by the TESS space mission in Sector 10. We obtain and model the stellar spectrum and find an object slightly smaller than the Sun, and somewhat older, but with a similar metallicity. Two planet candidates were found in the light curve to be transiting the star. Combining TESS transit photometry with HARPS high-precision radial velocity (RV) follow-up measurements confirm the planetary nature of these transit signals. We determine masses, radii, and bulk densities of these two planets. A third planet candidate was discovered serendipitously in the RV data. The inner transiting planet, TOI-763 b, has an orbital period of Pb  =  5.6 d, a mass of Mb  =  9.8 ± 0.8 M⊕, and a radius of Rb  =  2.37 ± 0.10 R⊕. The second transiting planet, TOI-763 c, has an orbital period of Pc  =  12.3 d, a mass of Mc  =  9.3 ± 1.0 M⊕, and a radius of Rc  =  2.87 ± 0.11 R⊕. We find the outermost planet candidate to orbit the star with a period of ∼48 d. If confirmed as a planet, it would have a minimum mass of Md  =  9.5 ± 1.6 M⊕. We investigated the TESS light curve in order to search for a mono transit by planet d without success. We discuss the importance and implications of this planetary system in terms of the geometrical arrangements of planets orbiting G-type stars.

[1]  A. Baglin I.1 The general framework , 2020, The CoRoT Legacy Book.

[2]  Miles Cranmer,et al.  Predicting the long-term stability of compact multiplanet systems , 2020, Proceedings of the National Academy of Sciences.

[3]  Chelsea X. Huang,et al.  Two Intermediate-mass Transiting Brown Dwarfs from the TESS Mission , 2020, The Astronomical Journal.

[4]  David J Armstrong,et al.  Mass determinations of the three mini-Neptunes transiting TOI-125 , 2020, Monthly Notices of the Royal Astronomical Society.

[5]  F. Bouchy,et al.  Revisited mass-radius relations for exoplanets below 120 M⊕ , 2019, Astronomy & Astrophysics.

[6]  Marshall C. Johnson,et al.  TOI-132 b: A short-period planet in the Neptune desert transiting a V = 11.3 G-type star★ , 2019, Monthly Notices of the Royal Astronomical Society.

[7]  A. Vanderburg,et al.  Know thy star, know thy planet: chemo-kinematically characterizing TESS targets , 2019, 1911.07825.

[8]  J. Ballot,et al.  Asteroseismology of solar-type stars , 2019, Living Reviews in Solar Physics.

[9]  Marshall C. Johnson,et al.  Greening of the brown-dwarf desert , 2019, Astronomy & Astrophysics.

[10]  M. Hippke,et al.  Optimized transit detection algorithm to search for periodic transits of small planets , 2019, Astronomy & Astrophysics.

[11]  P. Tenenbaum,et al.  Kepler Data Validation II–Transit Model Fitting and Multiple-planet Search , 2018, Publications of the Astronomical Society of the Pacific.

[12]  M. P. Hobson,et al.  Importance Nested Sampling and the MultiNest Algorithm , 2013, The Open Journal of Astrophysics.

[13]  Marshall C. Johnson,et al.  Greening of the Brown Dwarf Desert EPIC 212036875b – a 51 M J object in a 5 day orbit around an F7 V star , 2019 .

[14]  David P. Fleming,et al.  ${\mathtt{s}}{\mathtt{t}}{\mathtt{a}}{\mathtt{r}}{\mathtt{r}}{\mathtt{y}}$: Analytic Occultation Light Curves , 2019, The Astronomical Journal.

[15]  D. Gandolfi,et al.  pyaneti: a fast and powerful software suite for multiplanet radial velocity and transit fitting , 2018, Monthly Notices of the Royal Astronomical Society.

[16]  M. Esposito,et al.  Super-Earth of 8 M⊕ in a 2.2-day orbit around the K5V star K2-216 , 2018, Astronomy & Astrophysics.

[17]  K. Stassun,et al.  Evidence for a Systematic Offset of −80 μas in the Gaia DR2 Parallaxes , 2018, The Astrophysical Journal.

[18]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[19]  Jie Li,et al.  Kepler Data Validation I—Architecture, Diagnostic Tests, and Data Products for Vetting Transiting Planet Candidates , 2018, 1803.04526.

[20]  Sarah Blunt,et al.  RadVel: The Radial Velocity Modeling Toolkit , 2018, 1801.01947.

[21]  Keivan G. Stassun,et al.  The TESS Input Catalog and Candidate Target List , 2017, The Astronomical Journal.

[22]  S. V. Jeffers,et al.  Spectrum radial velocity analyser (SERVAL). High-precision radial velocities and two alternative spectral indicators , 2017, 1710.10114.

[23]  F. J. Alonso-Floriano,et al.  Exoplanets around Low-mass Stars Unveiled by K2 , 2017, 1710.03239.

[24]  Marshall C. Johnson,et al.  The Discovery and Mass Measurement of a New Ultra-short-period Planet: K2-131b , 2017, 1710.00076.

[25]  A. Johansen,et al.  K2-111 b − a short period super-Earth transiting a metal poor, evolved old star , 2017, 1704.08284.

[26]  A. Claret Limb and gravity-darkening coefficients for the TESS satellite at several metallicities, surface gravities, and microturbulent velocities , 2017 .

[27]  F. Bouchy,et al.  The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations , 2017, 1703.06885.

[28]  Erik A. Petigura,et al.  Four Sub-Saturns with Dissimilar Densities: Windows into Planetary Cores and Envelopes , 2017, 1702.00013.

[29]  E. Petigura,et al.  Precision Stellar Characterization of FGKM Stars using an Empirical Spectral Library , 2017, 1701.00922.

[30]  K. Stassun,et al.  EVIDENCE FOR A SYSTEMATIC OFFSET OF −0.25 mas IN THE GAIA DR1 PARALLAXES , 2016, 1609.05390.

[31]  K. Stassun,et al.  Accurate Empirical Radii and Masses of Planets and Their Host Stars with Gaia Parallaxes , 2016, 1609.04389.

[32]  Gaia Collaboration,et al.  The Gaia mission , 2016, 1609.04153.

[33]  J. Valenti,et al.  Spectroscopy Made Easy: Evolution , 2016, 1606.06073.

[34]  Peter Tenenbaum,et al.  The TESS science processing operations center , 2016, Astronomical Telescopes + Instrumentation.

[35]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[36]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[37]  Dimitar Sasselov,et al.  MASS–RADIUS RELATION FOR ROCKY PLANETS BASED ON PREM , 2015, 1512.08827.

[38]  H. Rauer,et al.  A DEFINITION FOR GIANT PLANETS BASED ON THE MASS–DENSITY RELATIONSHIP , 2015, 1506.05097.

[39]  R. Haywood,et al.  DETERMINING THE MASS OF KEPLER-78b WITH NONPARAMETRIC GAUSSIAN PROCESS ESTIMATION , 2015, 1501.00369.

[40]  W. Chaplin,et al.  Determining stellar macroturbulence using asteroseismic rotational velocities from Kepler , 2014, 1408.3988.

[41]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite , 2014, 1406.0151.

[42]  Howard Isaacson,et al.  Occurrence and core-envelope structure of 1–4× Earth-size planets around Sun-like stars , 2014, Proceedings of the National Academy of Sciences.

[43]  D. Sasselov,et al.  THE EFFECT OF TEMPERATURE EVOLUTION ON THE INTERIOR STRUCTURE OF H2O-RICH PLANETS , 2014, 1402.7299.

[44]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[45]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[46]  P. Giommi,et al.  The PLATO 2.0 mission , 2013, 1310.0696.

[47]  D. Kipping Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws , 2013, 1308.0009.

[48]  A. Collier Cameron,et al.  Planets and Stellar Activity: Hide and Seek in the CoRoT-7 system , 2013, Proceedings of the International Astronomical Union.

[49]  S. Csizmadia,et al.  A study of the performance of the transit detection tool DST in space-based surveys - Application of the CoRoT pipeline to Kepler data , 2012, 1211.6550.

[50]  Neil Rowlands,et al.  The JWST Fine Guidance Sensor (FGS) and Near-Infrared Imager and Slitless Spectrograph (NIRISS) , 2012, Other Conferences.

[51]  John C. Geary,et al.  Kepler-36: A Pair of Planets with Neighboring Orbits and Dissimilar Densities , 2012, Science.

[52]  Martin C. Stumpe,et al.  Kepler Presearch Data Conditioning II - A Bayesian Approach to Systematic Error Correction , 2012, 1203.1383.

[53]  Jeffery J. Kolodziejczak,et al.  Kepler Presearch Data Conditioning I—Architecture and Algorithms for Error Correction in Kepler Light Curves , 2012, 1203.1382.

[54]  R. Street,et al.  WASP-41b: A Transiting Hot Jupiter Planet Orbiting a Magnetically Active G8V Star , 2010, 1012.2977.

[55]  C. Moutou,et al.  Improved stellar parameters of CoRoT-7 A star hosting two super Earths , 2010, 1005.3208.

[56]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[57]  F. Adams The Birth Environment of the Solar System , 2010, 1001.5444.

[58]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[59]  M. Zechmeister,et al.  The generalised Lomb-Scargle periodogram. A new formalism for the floating-mean and Keplerian periodograms , 2009, 0901.2573.

[60]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[61]  I. Baraffe,et al.  Structure and evolution of super-Earth to super-Jupiter exoplanets - I. Heavy element enrichment in the interior , 2008, 0802.1810.

[62]  F. Pepe,et al.  A new list of thorium and argon spectral lines in the visible , 2007, astro-ph/0703412.

[63]  B. Enoch,et al.  The WASP Project and the SuperWASP Cameras , 2006, astro-ph/0608454.

[64]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[65]  Jean-Luis Lizon,et al.  Setting New Standards with HARPS , 2003 .

[66]  F. Allard,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003, astro-ph/0302293.

[67]  Annie Baglin,et al.  COROT: A minisat for pionnier science, asteroseismology and planets finding , 2003 .

[68]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[69]  Jon M. Jenkins,et al.  The Impact of Solar-like Variability on the Detectability of Transiting Terrestrial Planets , 2002 .

[70]  D. Queloz,et al.  The CORALIE survey for southern extra-solar planets VII - Two short-period Saturnian companions to HD 108147 and HD 168746 , 2002, astro-ph/0202457.

[71]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[72]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[73]  Michel Mayor,et al.  ELODIE: A spectrograph for accurate radial velocity measurements , 1996 .

[74]  J. Valenti,et al.  Spectroscopy Made Easy: A New Tool for Fitting Observations with Synthetic Spectra , 1996 .

[75]  M. Mayor,et al.  A Jupiter-mass companion to a solar-type star , 1995, Nature.

[76]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[77]  J. Hearnshaw,et al.  A search for substellar companions to southern solar-type stars , 1993 .

[78]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[79]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[80]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[81]  A. Savitzky,et al.  Smoothing and Differentiation of Data by Simplified Least Squares Procedures. , 1964 .

[82]  J. Rane,et al.  THE DISCOVERY AND MASS MEASUREMENT OF A NEW ULTRA-SHORT-PERIOD PLANET: EPIC 228732031B , 2022 .