Fractal Transport Phenomena through the Scale Relativity Model

A correspondence between Nottale’s scale relativity model and Cresson’s mathematical procedures is analyzed. It results that the “synchronization” of the movements at different scales (fractal scale, differential scale etc.) gives conductive type properties to the fractal fluid, while the absence of “synchronization” is inducing properties of convective type. The behavior of a conductive fractal fluid is illustrated through the numerical simulation of plasma diffusion that is generated by laser ablation. Rotational and irrotational convective behaviors of a fractal fluid are established. Particularly, at Compton spatial and temporal scales, the irrotational behavior implies the standard Schrodinger equation.

[1]  I. Good,et al.  Fractals: Form, Chance and Dimension , 1978 .

[2]  P. Mora,et al.  Plasma expansion into a vacuum. , 2003, Physical review letters.

[3]  Laurent Nottale,et al.  THE THEORY OF SCALE RELATIVITY , 1992 .

[4]  M. E. Naschie,et al.  On a class of general theories for high energy particle physics , 2002 .

[5]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[6]  J. Cresson Scale relativity theory for one-dimensional non-differentiable manifolds , 2002 .

[7]  M. Agop,et al.  Wave-Particle Duality through a Hydrodynamic Model of the Fractal Space-Time Theory , 2008 .

[8]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[9]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[10]  Laurent Nottale,et al.  Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .

[11]  Divergence d'échelle et différentiabilité , 2000 .

[12]  Jacky Cresson,et al.  Quantum derivatives and the Schrödinger equation , 2004 .

[13]  M. S. El Naschie,et al.  The Concepts of E Infinity: An elementary introduction to the Cantorian-fractal theory of quantum physics , 2004 .

[14]  NON-DIFFERENTIABLE DEFORMATIONS OF ℝn , 2006 .

[15]  Laurent Nottale,et al.  Scale relativity and fractal space-time: applications to quantum physics, cosmology and chaotic systems. , 1996 .

[16]  J. Z. Zhu,et al.  The finite element method , 1977 .

[17]  P. Ioannou,et al.  El Naschie's ε (∞) space-time, hydrodynamic model of scale relativity theory and some applications , 2007 .

[18]  I. Prigogine,et al.  Quantum mechanics, diffusion and chaotic fractals , 1995 .

[19]  M. Naschie Theoretical derivation and experimental confirmation of the topology of transfinite heterotic strings , 2001 .

[20]  M. S. El Naschie,et al.  From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold , 2005 .

[21]  M. Naschie Hilbert space, the number of Higgs particles and the quantum two-slit experiment , 2006 .

[22]  Benoit B. Mandelbrot,et al.  Fractals and Scaling in Finance , 1997 .

[23]  Gabriel Ciobanu,et al.  El Naschie’s ε(∞) space–time and new results in scale relativity theories , 2006 .

[24]  L. Spitzer Physics of fully ionized gases , 1956 .

[25]  Quantum–classical transition in scale relativity , 2004, quant-ph/0609161.

[26]  Jacky Cresson Non-differentiable variational principles , 2005 .

[27]  L. Nottale Scale relativity: From quantum mechanics to chaotic dynamics , 1995 .

[28]  L. Nottale Generalized quantum potentials , 2008, 0812.0941.

[29]  Laurent Nottale,et al.  On the transition from the classical to the quantum regime in fractal space-time theory , 2005 .

[30]  Laurent Nottale,et al.  The scale-relativity program , 1999 .

[31]  L. Nottale Scale-relativistic cosmology , 2003 .

[32]  Michael Tinkham,et al.  Introduction to mesoscopic physics , 1997 .

[33]  L. Nottale Scale Relativity and Schrödinger's Equation , 1998 .

[34]  Jacky Cresson Scale calculus and the Schrödinger equation , 2003 .

[35]  G Ord,et al.  Fractal space-time: a geometric analogue of relativistic quantum mechanics , 1983 .