Fractal Transport Phenomena through the Scale Relativity Model
暂无分享,去创建一个
Maricel Agop | P. Nica | Silviu Gurlui | M. Agop | S. Gurlui | P. Nica | G. Pompilian | V. P. Paun | M. Colotin | Gloria Pompilian | V. Paun | M. Colotin
[1] I. Good,et al. Fractals: Form, Chance and Dimension , 1978 .
[2] P. Mora,et al. Plasma expansion into a vacuum. , 2003, Physical review letters.
[3] Laurent Nottale,et al. THE THEORY OF SCALE RELATIVITY , 1992 .
[4] M. E. Naschie,et al. On a class of general theories for high energy particle physics , 2002 .
[5] D. Ferry,et al. Transport in nanostructures , 1999 .
[6] J. Cresson. Scale relativity theory for one-dimensional non-differentiable manifolds , 2002 .
[7] M. Agop,et al. Wave-Particle Duality through a Hydrodynamic Model of the Fractal Space-Time Theory , 2008 .
[8] C. Sparrow. The Fractal Geometry of Nature , 1984 .
[9] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[10] Laurent Nottale,et al. Fractal Space-Time And Microphysics: Towards A Theory Of Scale Relativity , 1993 .
[11] Divergence d'échelle et différentiabilité , 2000 .
[12] Jacky Cresson,et al. Quantum derivatives and the Schrödinger equation , 2004 .
[13] M. S. El Naschie,et al. The Concepts of E Infinity: An elementary introduction to the Cantorian-fractal theory of quantum physics , 2004 .
[14] NON-DIFFERENTIABLE DEFORMATIONS OF ℝn , 2006 .
[15] Laurent Nottale,et al. Scale relativity and fractal space-time: applications to quantum physics, cosmology and chaotic systems. , 1996 .
[16] J. Z. Zhu,et al. The finite element method , 1977 .
[17] P. Ioannou,et al. El Naschie's ε (∞) space-time, hydrodynamic model of scale relativity theory and some applications , 2007 .
[18] I. Prigogine,et al. Quantum mechanics, diffusion and chaotic fractals , 1995 .
[19] M. Naschie. Theoretical derivation and experimental confirmation of the topology of transfinite heterotic strings , 2001 .
[20] M. S. El Naschie,et al. From experimental quantum optics to quantum gravity via a fuzzy Kähler manifold , 2005 .
[21] M. Naschie. Hilbert space, the number of Higgs particles and the quantum two-slit experiment , 2006 .
[22] Benoit B. Mandelbrot,et al. Fractals and Scaling in Finance , 1997 .
[23] Gabriel Ciobanu,et al. El Naschie’s ε(∞) space–time and new results in scale relativity theories , 2006 .
[24] L. Spitzer. Physics of fully ionized gases , 1956 .
[25] Quantum–classical transition in scale relativity , 2004, quant-ph/0609161.
[26] Jacky Cresson. Non-differentiable variational principles , 2005 .
[27] L. Nottale. Scale relativity: From quantum mechanics to chaotic dynamics , 1995 .
[28] L. Nottale. Generalized quantum potentials , 2008, 0812.0941.
[29] Laurent Nottale,et al. On the transition from the classical to the quantum regime in fractal space-time theory , 2005 .
[30] Laurent Nottale,et al. The scale-relativity program , 1999 .
[31] L. Nottale. Scale-relativistic cosmology , 2003 .
[32] Michael Tinkham,et al. Introduction to mesoscopic physics , 1997 .
[33] L. Nottale. Scale Relativity and Schrödinger's Equation , 1998 .
[34] Jacky Cresson. Scale calculus and the Schrödinger equation , 2003 .
[35] G Ord,et al. Fractal space-time: a geometric analogue of relativistic quantum mechanics , 1983 .