An E-ELT case study: colour–magnitude diagrams of an old galaxy in the Virgo cluster

One of the key science goals for a diffraction limited imager on an extremely large telescope (ELT) is the resolution and accurate photometry of individual stars down to faint magnitudes in a range of environments. The aim of this study is to test the proposed capabilities of a multi-conjugate adaptive optics (MCAO) assisted imager working at the diffraction limit, in IJHKs filters, on a 42 m diameter ELT to carry out accurate stellar photometry in crowded images in an elliptical-like galaxy at the distance of the Virgo cluster. As a basis for realistic simulations we have used the phase A studies of the European-ELT project, including the MICADO imager and the MAORY MCAO module. We convolved a complex resolved stellar population with the telescope and instrument performance expectations to create realistic images. We then tested the ability of the currently available photometric packages STARFINDER and DAOPHOT to handle these simulated images. Our results show that for a one hour exposure deep colour–magnitude diagrams (photometric error, ±0.25 at I ≥ 27.2; H ≥ 25. and Ks ≥ 24.6) of old stellar populations in galaxies, at the distance of Virgo, are feasible at a maximum surface brightness, μV ∼ 17 mag/arcsec 2 (down to MI > − 4a ndMH ∼ MK > −6), and significantly deeper (photometric error, ±0.25 at I ≥ 29.3; H ≥ 26. 6a ndKs ≥ 26.2) for μV ∼ 21 mag/arcsec 2 (down to MI ≥− 2a ndMH ∼ MK ≥− 4.5). The photometric errors, and thus also the depth of the photometry could potentially be improved with photometry packages specifically designed for an ELT MCAO point spread function. We also make a simple comparison between these simulations and what can be expected from a single conjugate adaptive optics feed to MICADO and also the NIRCAM imager on the James Webb space telescope.

[1]  T. Lauer,et al.  THE DEEPEST HUBBLE SPACE TELESCOPE COLOR–MAGNITUDE DIAGRAM OF M32. EVIDENCE FOR INTERMEDIATE-AGE POPULATIONS , 2010, 1011.0582.

[2]  Reinhard Genzel,et al.  MICADO: The Multi-adaptive Optics Imaging Camera for Deep Observations , 2010 .

[3]  M. Gieles,et al.  A MAD view of Trumpler 14 , 2010, 1003.2208.

[4]  A. D. Mackey,et al.  VLT‐MAD observations of the core of 30 Doradus , 2010, 1002.0288.

[5]  M. Bellazzini,et al.  The cluster Terzan 5 as a remnant of a primordial building block of the Galactic bulge , 2009, Nature.

[6]  R. Brast,et al.  The jet of the BL Lac object PKS 0521 -365 in the near-IR : MAD adaptive optics observations , 2009, 0906.1069.

[7]  E. Tolstoy,et al.  Star-Formation Histories, Abundances, and Kinematics of Dwarf Galaxies in the Local Group , 2009, 0904.4505.

[8]  R. Brast,et al.  MCAO near-IR photometry of the globular cluster NGC 6388: MAD observations in crowded fields , 2008, 0810.2248.

[9]  Ralf Bender,et al.  STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES , 2008, 0810.1681.

[10]  S. Ortolani,et al.  Multi-Conjugate Adaptive Optics VLT imaging of the distant old open cluster FSR 1415 , 2008, 0810.0341.

[11]  E. Diolaiti,et al.  Probing the Galactic Bulge with Deep Adaptive Optics Imaging: The Age of NGC 6440 , 2008, 0809.3939.

[12]  J. Spyromilio,et al.  The European Extremely Large Telescope (E-ELT) , 2007 .

[13]  Ted von Hippel,et al.  The Resolved Stellar Populations of a Dwarf Spheroidal Galaxy in the Virgo Cluster , 2006, astro-ph/0611180.

[14]  Nelson Caldwell,et al.  Color-Magnitude Diagrams of Resolved Stars in Virgo Cluster Dwarf Galaxies , 2006, astro-ph/0607476.

[15]  A. Cimatti,et al.  Evidence for TP-AGB Stars in High-Redshift Galaxies, and Their Effect on Deriving Stellar Population Parameters , 2006, astro-ph/0604530.

[16]  Jean-Pierre Véran,et al.  Analytical modeling of adaptive optics: foundations of the phase spatial power spectrum approach. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  M. Kasper,et al.  Adaptive optics for Extremely Large Telescopes , 2005, Proceedings of the International Astronomical Union.

[18]  C. Gallart,et al.  The Adequacy of Stellar Evolution Models for the Interpretation of the Color-Magnitude Diagrams of Resolved Stellar Populations , 2005 .

[19]  C. Gallart,et al.  IAC-STAR: A Code for Synthetic Color-Magnitude Diagram Computation , 2004, astro-ph/0407589.

[20]  S. Cassisi,et al.  A Large Stellar Evolution Database for Population Synthesis Studies. I. Scaled Solar Models and Isochrones , 2004, astro-ph/0405193.

[21]  F. Ferraro,et al.  IR photometric properties of Red Giants in ω Cen , 2004, astro-ph/0402100.

[22]  Wendy L. Freedman,et al.  The Stellar Content of the Bulge of M31 , 2003 .

[23]  K. Olsen,et al.  Stellar Crowding and the Science Case for Extremely Large Telescopes , 2003, astro-ph/0304163.

[24]  C. Cacciari,et al.  Stellar parameters for Pop II A-type stars from IUE spectra and new-ODF ATLAS9 model atmospheres ? , 2001 .

[25]  C. Ree,et al.  Toward Better Age Estimates for Stellar Populations: The Y2 Isochrones for Solar Mixture , 2001, astro-ph/0104292.

[26]  S. Cassisi,et al.  A new analysis of the red giant branch ‘tip’ distance scale and the value of the Hubble constant , 1998, astro-ph/9803103.

[27]  A. Renzini,et al.  The Stellar Populations of Pixels and Frames , 1998, astro-ph/9802186.

[28]  Antonio Aparicio,et al.  The Local Group Dwarf Irregular Galaxy NGC 6822.I.The Stellar Content , 1996 .

[29]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[30]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[31]  Massimo Capaccioli,et al.  Is the standard elliptical NGC 3379 a triaxial disk galaxy , 1991 .

[32]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[33]  A. Sandage,et al.  Studies of the Virgo Cluster. II - A catalog of 2096 galaxies in the Virgo Cluster area. , 1985 .

[34]  J. Condon,et al.  Confusion and flux-density error distributions , 1974 .

[35]  P. A. G. Scheuer,et al.  A statistical method for analysing observations of faint radio stars , 1957, Mathematical Proceedings of the Cambridge Philosophical Society.

[36]  I. Hook Overview of the Science Case for a 50–100m Extremely Large Telescope , 2007 .

[37]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[38]  Jason Spyromilio,et al.  Progress on the European Extremely Large Telescope Telescopes and Instrumentation , 2022 .