Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms

The combination of chalcogenide glasses with polymer photonic crystal fibers (PCFs) is a difficult and challenging task due to their different thermo-mechanical material properties. Here we report the first experimental realization of a hybrid polymer-chalcogenide PCF with integrated As2S3 glass nanofilms at the inner surface of the air-channels of a poly-methyl-methacrylate (PMMA) PCF. The integrated high refractive index glass films introduce distinct antiresonant transmission bands in the 480–900 nm wavelength region. We demonstrate that the ultra-high Kerr nonlinearity of the chalcogenide glass makes the polymer PCF nonlinear and provides a possibility to shift the transmission band edges as much as 17 nm by changing the intensity. The proposed fabrication technique constitutes a new highway towards all-fiber nonlinear tunable devices based on polymer PCFs, which at the moment is not possible with any other fabrication method.

[1]  Ayman F. Abouraddy,et al.  Metal–insulator–semiconductor optoelectronic fibres , 2004, Nature.

[2]  S. Sternklar,et al.  Noise in chi ((3)) and photorefractive amplifiers. , 1995, Optics letters.

[3]  Christos Markos,et al.  Chalcogenide glass layers in silica photonic crystal fibers. , 2012, Optics express.

[4]  Ole Bang,et al.  Localized biosensing with Topas microstructured polymer optical fiber: erratum , 2007 .

[5]  B. Eggleton,et al.  Application of an ARROW model for designing tunable photonic devices. , 2004, Optics express.

[6]  M. Rochette,et al.  Highly nonlinear hybrid AsSe-PMMA microtapers. , 2010, Optics express.

[7]  Maryanne C. J. Large,et al.  Fabrication of microstructured polymer optical fibres , 2004 .

[8]  R. McPhedran,et al.  Modal cutoff in microstructured optical fibers. , 2002, Optics letters.

[9]  Barry Luther-Davies,et al.  Low-loss Waveguides in Ultrafast Laser-deposited As 2 S 3 Chalcogenide Films , 2003 .

[10]  Winn,et al.  A dielectric omnidirectional reflector , 1998, Science.

[11]  M. Schmidt,et al.  Optical properties of photonic crystal fiber with integral micron-sized Ge wire. , 2008, Optics express.

[12]  David J. Richardson,et al.  Chalcogenide holey fibres , 2000 .

[13]  Markus A. Schmidt,et al.  High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices , 2010 .

[14]  Anders Bjarklev,et al.  Optical devices based on liquid crystal photonic bandgap fibres. , 2003, Optics express.

[15]  G. Zito,et al.  Photosensitive, all-glass AgPO3/silicaphotonic bandgap fiber. , 2012, Optics letters.

[16]  Zhi-Yuan Li,et al.  Fabrication of semiconductor-polymer compound nonlinear photonic crystal slab with highly uniform infiltration based on nano-imprint lithography technique. , 2012, Optics express.

[17]  Knight,et al.  Single-Mode Photonic Band Gap Guidance of Light in Air. , 1999, Science.

[18]  J. Taylor,et al.  Ten years of nonlinear optics in photonic crystal fibre , 2009 .

[19]  David J. Webb,et al.  Optical fibre Bragg grating recorded in TOPAS cyclic olefin copolymer , 2011 .

[20]  Ole Bang,et al.  Localized biosensing with Topas microstructured polymer optical fiber. , 2007, Optics letters.

[21]  S Spälter,et al.  Large Kerr effect in bulk Se-based chalcogenide glasses. , 2000, Optics letters.

[22]  Abdolnasser Zakery Low loss waveguides in pulsed laser deposited arsenic sulfide chalcogenide films , 2002 .

[23]  B. Eggleton,et al.  Antiresonant reflecting photonic crystal optical waveguides. , 2002, Optics letters.

[24]  Ole Bang,et al.  Selective Serial Multi-Antibody Biosensing with TOPAS Microstructured Polymer Optical Fibers , 2013, Sensors (Basel, Switzerland).

[25]  Christos Markos,et al.  High-Tg TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. , 2013, Optics express.

[26]  Alexander Argyros,et al.  Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling. , 2010, Optics express.

[27]  Ross C. McPhedran,et al.  Multipole Analysis of Photonic Crystal Fibers with Coated Inclusions , 2006, 2006 European Conference on Optical Communications.

[28]  Lothar Wondraczek,et al.  All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers. , 2009, Optics letters.

[29]  J. Jensen,et al.  Selective detection of antibodies in microstructured polymer optical fibers. , 2005, Optics express.

[30]  Laurent Brilland,et al.  Fabrication of complex structures of Holey Fibers in Chalcogenide glass. , 2006, Optics express.

[31]  Thomas Tanggaard Alkeskjold,et al.  Thermal tunability of photonic bandgaps in liquid crystal infiltrated microstructured polymer optical fibers. , 2009, Optics express.

[32]  G. Chern,et al.  Spin‐coated amorphous chalcogenide films , 1982 .

[33]  C. Pantano,et al.  Solution/gelation of arsenic trisulfide in amine solvents , 1989 .

[34]  Jasbinder S. Sanghera,et al.  Large Raman gain and nonlinear phase shifts in high-purity As 2 Se 3 chalcogenide fibers , 2004 .

[35]  Numerical Simulation of Dynamic Bandgap Control in All-Solid Chalcogenide–Tellurite Photonic Bandgap Fiber , 2013, IEEE Photonics Journal.

[36]  Candice Tsay,et al.  Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides. , 2010, Optics express.

[37]  B. Eggleton,et al.  Fluid-Filled Solid-Core Photonic Bandgap Fibers , 2009, Journal of Lightwave Technology.

[38]  A. Argyros,et al.  Microstructured Polymer Optical Fibers , 2009, Journal of Lightwave Technology.

[39]  P. Russell,et al.  Endlessly single-mode photonic crystal fiber. , 1997, Optics letters.

[40]  J. Bae,et al.  Measurement of Thermo-Optic Coefficients in Sol-Gel Hybrid Glass Films , 2003 .

[41]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[42]  O. Shapira,et al.  Towards multimaterial multifunctional fibres that see, hear, sense and communicate. , 2007, Nature materials.

[43]  David J. Webb,et al.  827 nm Bragg grating sensor in multimode microstructured polymer optical fibre , 2010 .

[44]  J. Knight,et al.  All-solid photonic bandgap fiber. , 2004, Optics letters.

[45]  Pier J. A. Sazio,et al.  Integration of gigahertz-bandwidth semiconductor devices inside microstructured optical fibres , 2012, Nature Photonics.

[46]  P S Westbrook,et al.  Highly tunable birefringent microstructured optical fiber. , 2002, Optics letters.

[47]  D. Webb,et al.  Humidity insensitive TOPAS polymer fiber Bragg grating sensor. , 2011, Optics express.

[48]  Irving H. Malitson,et al.  Refractive Index of Arsenic Trisulfide , 1958 .

[49]  John D Joannopoulos,et al.  Dynamic all-optical tuning of transverse resonant cavity modes in photonic bandgap fibers. , 2005, Optics letters.

[50]  Maryanne C. J. Large,et al.  The role of viscoelastic properties in strain testing using microstructured polymer optical fibres (mPOF) , 2009 .

[51]  A. C. Peacock,et al.  Ultrafast optical control using the Kerr nonlinearity in hydrogenated amorphous silicon microcylindrical resonators , 2013, Scientific Reports.

[52]  Alessio Stefani,et al.  Cleaving of TOPAS and PMMA microstructured polymer optical fibers: Core-shift and statistical quality optimization , 2012 .

[53]  Recon,et al.  Large and Dynamical Tuning of a Chalcogenide Fabry-perot Cavity Mode by Temperature Modulation References and Links , 2022 .