The adsorbed states of ethylene on Si(100)c(4×2), Si(100)(2×1), and vicinal Si(100) 9°: Electron energy loss spectroscopy and low‐energy electron diffraction studies

The adsorbed states of ethylene on the Si(100)c(4×2), Si(100)(2×1), and the Si(100) 9° vicinal surfaces have been studied using high resolution electron energy loss spectroscopy (EELS) and low‐energy electron diffraction (LEED). Ethylene is nondissociatively chemisorbed on the Si(100) surface in the wide temperature range between 77 and ∼600 K, and is rehybridized to have a near sp3 hybridization state. The adsorbed structure is proposed in which ethylene is di‐σ bonded to two adjacent Si atoms of the dimer at the Si(100) surface. The thermal decomposition of chemisorbed ethylene and the influence of steps on the adsorbed states of ethylene are discussed.

[1]  R. Kaplan,et al.  LEED study of the stepped surface of vicinal Si (100) , 1980 .

[2]  Hamers,et al.  Scanning tunneling microscopy of Si(001). , 1986, Physical review. B, Condensed matter.

[3]  Y. Chabal Infrared study of the chemisorption of hydrogen and water on vicinal Si(100) 2×1 surfaces , 1985 .

[4]  H. Bilz,et al.  Phonon Dispersion Relations in Insulators , 1979 .

[5]  D. Chadi,et al.  Atomic and Electronic Structures of Reconstructed Si(100) Surfaces , 1979 .

[6]  R. Madix,et al.  Use of the .pi..sigma. parameter for characterization of rehybridization upon adsorption on metal surfaces , 1985 .

[7]  G. Rubloff Selection rule effects in electronic excitations of chemisorbed molecules as studied by energy loss spectroscopy , 1978 .

[8]  H. Kriegsmann Spektroskopische Untersuchungen an Siliciumverbindungen. IX. Über die Bindungsverhältnisse in der Siliciumchemie , 1959 .

[9]  G. Somorjai Catalysis and surface science , 2011 .

[10]  D. Mills,et al.  Electron Energy Loss Spectroscopy and Surface Vibrations , 1982 .

[11]  Yves J. Chabal,et al.  Evidence of dissociation of water on the Si(100)2 × 1 surface , 1984 .

[12]  S. Andersson,et al.  Vibrational excitations and structure of C2H4 adsorbed on Cu(100) , 1982 .

[13]  J. Yoshinobu,et al.  Rehybridization of acetylene on the Si(111) (7 × 7) surface - a vibrational study , 1986 .

[14]  J. Demuth,et al.  Experimental study of the vibrations of acetylene chemisorbed on Ni(111) , 1979 .

[15]  C. Backx,et al.  Electron energy loss spectroscopy and its applications , 1980 .

[16]  W. Gwinn,et al.  Rotational Isomerism and the Vibrational Spectrum of 1,2‐Dibromoethane , 1950 .

[17]  R. Madix,et al.  Bonding and dehydrogenation of ethylene on palladium metal. Vibrational spectra and temperature-programed reaction studies on palladium(100) , 1985 .

[18]  H. Wagner,et al.  Vibrational study of the initial stages of the oxidation of Si(111) and Si(100) surfaces , 1982 .

[19]  F. Zaera,et al.  Low temperature decomposition of ethylene over Ni(100): Evidence for vinyl formation , 1987 .

[20]  G. Ertl,et al.  Interaction of acetylene and ethylene with an Fe(111) surface , 1984 .

[21]  Y. Chabal,et al.  Surface infrared study of Si(100)-(2×1)H , 1984 .

[22]  J. Yoshinobu,et al.  Interaction of ethylene with the Si(111)(7×7) surface- A vibrational study , 1986 .

[23]  W. Göpel,et al.  Monohydride and dihydride formation at Si(100) 2x1: A high resolution electron energy loss spectroscopy study , 1983 .

[24]  J. N. Russell,et al.  Methods in semiconductor surface chemistry , 1987 .

[25]  W. H. Weinberg,et al.  Interaction of Ethylene with the Ru(001) Surface , 1986 .

[26]  A. Baró,et al.  Vibrational spectra of acetylene and ethylene adsorbed on Fe(110) , 1982 .

[27]  Yoshiki Ogawa,et al.  Tables of molecular vibrational frequencies , 1972 .

[28]  N. Norton RHEED observations of disorder on Si(001)-(2×1) surfaces , 1983 .

[29]  H. Ibach,et al.  Decomposition of hydrocarbons on flat and stepped Ni(111) surfaces , 1979 .