Approximation of Invariant Surfaces by Periodic Orbits in High-Dimensional Maps: Some Rigorous Results

The existence of an invariant surface in high-dimensional systems greatly influences the. behavior in a neighborhood of the invariant surface. We prove theorems that predict the behavior of periodic orbits in the vicinity of an invariant surface on which the motion is conjugate to a Diophantine rotation for symplectic maps and quasiperiodic perturbations of symplectic maps. Our results allow for efficient numerical algorithms that can serve as an indication for the breakdown of invariant surfaces.

[1]  H. Rüssmann Note on sums containing small divisors , 1976 .

[2]  R. Llave,et al.  A rigorous partial justification of Greene's criterion , 1992 .

[3]  S. Tompaidis Numerical Study of Invariant Sets of a Volume-preserving Map , 1995 .

[4]  Henri Poincaré,et al.  New methods of celestial mechanics , 1967 .

[5]  A. Katok,et al.  Birkhoff periodic orbits for small perturbations of completely integrable Hamiltonian systems with convex Hamiltonians , 1987 .

[6]  G. Benettin,et al.  Composition of Lie transforms with rigorous estimates and applications to Hamiltonian perturbation theory , 1989 .

[7]  C. Chandre,et al.  An approximate renormalization for the break-up of invariant tori with three frequencies , 1994, nlin/0001033.

[8]  Rafael de la Llave,et al.  Computation of domains of analyticity for some perturbative expansions of mechanics , 1994 .

[9]  Helmut Rüssmann,et al.  On optimal estimates for the solutions of linear partial differential equations of first order with constant coefficients on the torus , 1975 .

[10]  John M. Greene,et al.  A method for determining a stochastic transition , 1979, Hamiltonian Dynamical Systems.

[11]  Stathis Tompaidis,et al.  Numerical Study of Invariant Sets of a Quasiperiodic Perturbation of a Symplectic Map , 1996, Exp. Math..

[12]  J. Mather Variational construction of orbits of twist diffeomorphisms , 1991 .

[13]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[14]  Henri Poincaré,et al.  méthodes nouvelles de la mécanique céleste , 1892 .

[15]  Stephen Wiggins,et al.  KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow , 1994 .

[16]  R. MacKay Greene's residue criterion , 1992 .

[17]  Jürgen Moser,et al.  Lectures on Celestial Mechanics , 1971 .