Volumetric interfacial area prediction in upward bubbly two-phase flow

Abstract In two-phase flow studies, a volumetric interfacial area balance equation is often used in addition to the multidimensional two-fluid model to describe the geometrical structure of the two-phase flow. In the particular case of bubbly flows, numerous works have been done by different authors on the subject. Our work concerns two main modifications of this balance equation: (1) new time scales are proposed for turbulence induced coalescence and breakup, (2) modeling of the nucleation of new bubbles on the volumetric interfacial area. The 3D module of the CATHARE code is used to evaluate our new model, in comparison to three other models for interfacial area found in the literature, on two different experiments. First, we use the DEBORA experimental data base for the comparison in the case of boiling bubbly flow. The comparison of the different volumetric interfacial area models to the DEBORA experimental data shows that even though the theoretical values of the coefficients are adopted in our modified model, this model has a quite good capability to predict the local two-phase geometrical parameters in the boiling flow conditions. Secondly, we compare the predictions obtained with the same models to the DEDALE experimental data base, for the case of adiabatic bubbly flow. In comparison to the other models tested, our model also gives quite good predictions of the bubble diameter in the case of adiabatic conditions.

[1]  Mamoru Ishii,et al.  Two-group interfacial area transport equations at bubbly-to-slug flow transition , 2000 .

[2]  H. C. Ünal,et al.  Maximum bubble diameter, maximum bubble-growth time and bubble-growth rate during the subcooled nucleate flow boiling of water up to 17.7 MN/m2 , 1976 .

[3]  N. Zuber ON THE DISPERSED TWO-PHASE FLOW IN THE LAMINAR FLOW REGIME. , 1964 .

[4]  Christophe Morel Modélisation multidimensionnelle des écoulements diphasiques gaz - liquide : application à la simulation des écoulements à bulles ascendants en conduite verticale , 1997 .

[5]  R. Schiestel,et al.  Modélisation et simulation des écoulements turbulents , 1993 .

[6]  S. H. Park,et al.  The Splitting of Drops and Bubbles by Turbulent Fluid Flow , 1973 .

[7]  Nicholas P. Cheremisinoff,et al.  Handbook of fluids in motion , 1983 .

[8]  Said Elghobashi,et al.  A two‐equation turbulence model for two‐phase flows , 1983 .

[9]  F. Barre,et al.  Overview of the numerical and computational developments performed in the frame of the CATHARE 2 code , 1995 .

[10]  Mamoru Ishii TWO-FLUID MODEL FOR TWO-PHASE FLOW , 1987 .

[11]  Mamoru Ishii,et al.  Interfacial area and nucleation site density in boiling systems , 1983 .

[12]  Wei Yao,et al.  Prediction of Parameters Distribution of Upward Boiling Two-Phase Flow With Two-Fluid Models , 2002 .

[13]  M. Ishii,et al.  Micro four-sensor probe measurement of interfacial area transport for bubbly flow in round pipes , 2001 .

[14]  Mamoru Ishii,et al.  One-group interfacial area transport of bubbly flows in vertical round tubes , 2000 .

[15]  K. Nakao,et al.  Coalescence and breakup of bubbles in liquids , 1977 .

[16]  J. Marié,et al.  Modélisation de la turbulence de la phase liquide dans un écoulement à bulles , 1984 .

[17]  Won Kook Lee,et al.  COALESCENCE BEHAVIOR OF TWO BUBBLES IN STAGNANT LIQUIDS , 1987 .

[18]  Frédéric Risso,et al.  THE MECHANISMS OF DEFORMATION AND BREAKUP OF DROPS AND BUBBLES , 2000 .

[19]  Michel Lance,et al.  PHASE DISTRIBUTION PHENOMENA AND WALL EFFECTS IN BUBBLY TWO-PHASE FLOWS , 1994 .

[20]  Jean-Marc Delhaye Some issues related to the modeling of interfacial areas in gas–liquid flows, II. Modeling the source terms for dispersed flows , 2001 .

[21]  M. Ishii,et al.  One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes , 2003 .

[22]  Claudie Grossetete Caractérisation expérimentale et simulations de l'évolution d'un écoulement diphasique à bulles ascendant dans une conduite verticale , 1995 .

[23]  Mamoru Ishii,et al.  One-group interfacial area transport in vertical bubbly flow , 1998 .

[24]  C. W. Stewart Bubble interaction in low-viscosity liquids , 1996 .

[25]  H. Blanch,et al.  Bubble coalescence and break‐up in air‐sparged bubble columns , 1990 .

[26]  T. R. Auton,et al.  The lift force on a spherical body in a rotational flow , 1987, Journal of Fluid Mechanics.

[27]  M. J. Lockett,et al.  The influence of approach velocity on bubble coalescence , 1974 .

[28]  Lawrence L. Tavlarides,et al.  Description of interaction processes in agitated liquid-liquid dispersions , 1977 .

[29]  Etienne Manon,et al.  Contribution à l'analyse et à la modélisation locale des écoulements bouillants sous-saturés dans les conditions des réacteurs à eau sous pression , 2000 .

[30]  Michael Z. Podowski,et al.  MULTIDIMENSIONAL EFFECTS IN FORCED CONVECTION SUBCOOLED BOILING , 1990 .