The Topology of the Cosmic Web in Terms of Persistent Betti Numbers

We introduce a multiscale topological description of the Megaparsec web-like cosmic matter distribution. Betti numbers and topological persistence offer a powerful means of describing the rich connectivity structure of the cosmic web and of its multiscale arrangement of matter and galaxies. Emanating from algebraic topology and Morse theory, Betti numbers and persistence diagrams represent an extension and deepening of the cosmologically familiar topological genus measure and the related geometric Minkowski functionals. In addition to a description of the mathematical background, this study presents the computational procedure for computing Betti numbers and persistence diagrams for density field filtrations. The field may be computed starting from a discrete spatial distribution of galaxies or simulation particles. The main emphasis of this study concerns an extensive and systematic exploration of the imprint of different web-like morphologies and different levels of multiscale clustering in the corresponding computed Betti numbers and persistence diagrams. To this end, we use Voronoi clustering models as templates for a rich variety of web-like configurations and the fractal-like Soneira-Peebles models exemplify a range of multiscale configurations. We have identified the clear imprint of cluster nodes, filaments, walls, and voids in persistence diagrams, along with that of the nested hierarchy of structures in multiscale point distributions. We conclude by outlining the potential of persistent topology for understanding the connectivity structure of the cosmic web, in large simulations of cosmic structure formation and in the challenging context of the observed galaxy distribution in large galaxy surveys.

[1]  Rien van de Weygaert,et al.  Alpha Shape Topology of the Cosmic Web , 2010, 2010 International Symposium on Voronoi Diagrams in Science and Engineering.

[2]  Herbert Edelsbrunner,et al.  Computing Robustness and Persistence for Images , 2010, IEEE Transactions on Visualization and Computer Graphics.

[3]  Afra J. Zomorodian,et al.  Topology for Computing (Cambridge Monographs on Applied and Computational Mathematics) , 2005 .

[4]  Gunnar E. Carlsson,et al.  Topology and data , 2009 .

[5]  A. S. Szalay,et al.  The Hierarchical Structure and Dynamics of Voids , 2012, 1203.0248.

[6]  Atsuyuki Okabe,et al.  Spatial Tessellations: Concepts and Applications of Voronoi Diagrams , 1992, Wiley Series in Probability and Mathematical Statistics.

[7]  Benjamin D. Wandelt,et al.  Voids in the SDSS DR9: observations, simulations, and the impact of the survey mask , 2013, 1310.7155.

[8]  Shaun Cole,et al.  Merger rates in hierarchical models of galaxy formation – II. Comparison with N-body simulations , 1994 .

[9]  N. U. Prabhu,et al.  Stochastic Processes and Their Applications , 1999 .

[10]  Matthias Steinmetz,et al.  The cosmic web and the orientation of angular momenta , 2012, 1201.3365.

[11]  Emilio Falco,et al.  THE 2MASS REDSHIFT SURVEY—DESCRIPTION AND DATA RELEASE , 2011, 1108.0669.

[12]  Durham,et al.  Evolution of the cosmic web , 2014, 1401.7866.

[13]  Leonidas J. Guibas,et al.  Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.

[14]  J. R. Bond,et al.  Clusters and the Theory of the Cosmic Web , 2008 .

[15]  Rien van de Weygaert Voronoi Tessellations and the Cosmic Web: Spatial Patterns and Clustering across the Universe , 2007, ISVD.

[16]  Larry A. Wasserman,et al.  Minimax Manifold Estimation , 2010, J. Mach. Learn. Res..

[17]  P. J. E. Peebles,et al.  A computer model universe - Simulation of the nature of the galaxy distribution in the Lick catalog , 1978 .

[18]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[19]  C. Carollo,et al.  The evolution of dark matter halo properties in clusters, filaments, sheets and voids , 2007, 0704.2595.

[20]  B. Sathyaprakash,et al.  Filaments and Pancakes in the IRAS 1.2 Jy Redshift Catalog , 1998, astro-ph/9805265.

[21]  Rien van de Weygaert,et al.  Betti Numbers of Gaussian Fields , 2013, 1307.2384.

[22]  S. White,et al.  The EAGLE project: Simulating the evolution and assembly of galaxies and their environments , 2014, 1407.7040.

[23]  Shaun Cole,et al.  Generating dark matter halo merger trees , 2007, 0708.1382.

[24]  Herbert Edelsbrunner,et al.  Computational Topology - an Introduction , 2009 .

[25]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[26]  T. Sousbie The persistent cosmic web and its filamentary structure I: Theory and implementation , 2010, 1009.4015.

[27]  Herbert Edelsbrunner,et al.  Alpha, Betti and the Megaparsec Universe: On the Topology of the Cosmic Web , 2013, Trans. Comput. Sci..

[28]  R. Nichol,et al.  Cosmological parameters from SDSS and WMAP , 2003, astro-ph/0310723.

[29]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[30]  D. Weinberg,et al.  The topology of the large-scale structure of the universe , 1986 .

[31]  Rien van de Weygaert,et al.  NEXUS: Tracing the cosmic web connection , 2012, 1209.2043.

[32]  R. Weygaert,et al.  A cosmic watershed: the WVF void detection technique , 2007, 0706.2788.

[33]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[34]  Vijay Natarajan,et al.  Felix: A Topology Based Framework for Visual Exploration of Cosmic Filaments , 2015, IEEE Transactions on Visualization and Computer Graphics.

[35]  Leonidas J. Guibas,et al.  Persistence Barcodes for Shapes , 2005, Int. J. Shape Model..

[36]  J. Bond,et al.  How filaments of galaxies are woven into the cosmic web , 1995, Nature.

[37]  David G. Kirkpatrick,et al.  On the shape of a set of points in the plane , 1983, IEEE Trans. Inf. Theory.

[38]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2007, Discret. Comput. Geom..

[39]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[40]  W. Schaap DTFE : the Delaunay Tessellation Field Estimator , 2007 .

[41]  Rien van de Weygaert,et al.  A hierarchy of voids: much ado about nothing , 2003, astro-ph/0311260.

[42]  Sergei F. Shandarin,et al.  The multi-stream flows and the dynamics of the cosmic web , 2010, 1011.1924.

[43]  J. University,et al.  The Multiscale Morphology Filter: Identifying and Extracting Spatial Patterns in the Galaxy Distribution , 2007, 0705.2072.

[44]  B. Sathyaprakash,et al.  Disentangling the Cosmic Web. I. Morphology of Isodensity Contours , 1999, astro-ph/9904384.

[45]  S. Colombi,et al.  Tree structure of a percolating Universe. , 2000, Physical review letters.

[46]  Mark C. Neyrinck,et al.  Origami constraints on the initial-conditions arrangement of dark-matter caustics and streams , 2012, 1202.3364.

[47]  Rien van de Weygaert,et al.  Spin alignment of dark matter halos in filaments and walls , 2006 .

[48]  Baltimore.,et al.  Multiscale phenomenology of the cosmic web , 2010, 1007.0742.

[49]  Jian Sun,et al.  Gromov-Hausdorff Approximation of Filament Structure Using Reeb-type Graph , 2014, SoCG.

[50]  Oliver Hahn,et al.  Tracing the dark matter sheet in phase space , 2011, 1111.3944.

[51]  M. Strauss,et al.  Crawling the cosmic network: identifying and quantifying filamentary structure , 2010, 1003.3237.

[52]  T. Buchert,et al.  Beyond Genus Statistics: A Unifying Approach to the Morphology of Cosmic Structure , 1997, astro-ph/9702130.

[53]  Herbert Edelsbrunner,et al.  Geometry and Topology for Mesh Generation , 2001, Cambridge monographs on applied and computational mathematics.

[54]  Stéphane Colombi,et al.  The Three-dimensional Skeleton of the SDSS , 2007 .

[55]  J. Gott,et al.  The Sponge-like Topology of Large-Scale Structure in the Universe , 1986 .

[56]  Kei Hiraki,et al.  THE COSMOGRID SIMULATION: STATISTICAL PROPERTIES OF SMALL DARK MATTER HALOS , 2011, 1101.2020.

[57]  N. Padilla,et al.  Automated detection of filaments in the large-scale structure of the Universe , 2009, 0912.0006.

[58]  R. Weygaert Froth Across the Universe , 2002 .

[59]  Risa H. Wechsler,et al.  GRAVITATIONALLY CONSISTENT HALO CATALOGS AND MERGER TREES FOR PRECISION COSMOLOGY , 2011, 1110.4370.

[60]  Hans Hagen,et al.  Direct Feature Visualization Using Morse-Smale Complexes , 2012, IEEE Transactions on Visualization and Computer Graphics.

[61]  Bernard J. T. Jones,et al.  Why the Universe is not a fractal , 1990 .

[62]  R. Smullyan ANNALS OF MATHEMATICS STUDIES , 1961 .

[63]  Herbert Edelsbrunner,et al.  Three-dimensional alpha shapes , 1994, ACM Trans. Graph..

[64]  M. Neyrinck zobov: a parameter-free void-finding algorithm , 2007, 0712.3049.

[65]  J. E. Forero-Romero,et al.  A Dynamical Classification of the Cosmic Web , 2008, 0809.4135.

[66]  R. S. Stoica,et al.  Filaments in observed and mock galaxy catalogues , 2009, 0912.2021.

[67]  R. Nichol,et al.  VIPERS: An Unprecedented View of Galaxies and Large-Scale Structure Halfway Back in the Life of the Universe , 2013, 1303.3930.

[68]  S. Colombi,et al.  Skeleton as a probe of the cosmic web : the two-dimensional case , 2003, astro-ph/0307003.

[69]  C. Pichon,et al.  The persistent cosmic web and its filamentary structure II: Illustrations , 2010, 1009.4014.

[70]  S. D. M. White,et al.  The merging history of dark matter haloes in a hierarchical universe , 1993 .

[71]  Afra Zomorodian,et al.  Computing Persistent Homology , 2005, Discret. Comput. Geom..