Feeding by heterotrophic protists and copepods on the photosynthetic dinoflagellate Azadinium cf. poporum from western Korean waters

We explored the interactions between the photosynthetic dinoflagellate Azadinium cf. poporum isolated from Korean waters and potential predators, including engulfment feeders, a pallium feeder, peduncle feeders, and filter feeders. We measured the growth and/or ingestion rates of Oxyrrhis marina, Strobilidium sp., and Acartia spp. on A. cf. poporum as a function of prey concentrations. We also calculated grazing coefficients by using field data on abundance of Strobilidium sp.-sized naked ciliates co-occurring with A. cf. poporum and laboratory data on ingestion rates obtained in this study. Most of the tested organisms were able to feed on A. cf. poporum, but only O. marina, Strobilidium sp., and Acartia spp. showed sustained growth and/or ingestion on A. cf. poporum. Thus, some heterotrophic dinoflagellates using engulfment and filter feeders, such as ciliates and copepods, are likely to be optimal predators, while peduncle-feeding heterotrophic dinoflagellates are unlikely to efficiently feed due to the handling of the theca. The predators had low ratios of maximum growth rate to maximum ingestion rate on A. cf. poporum, as well as low gross growth efficiencies. Therefore, A. cf. poporum appears to be a low-quality prey for the predators tested. Grazing coefficients ranged between 0.052 and 0.446 d−1, suggesting that Strobilidium sp.-sized naked ciliates may sometimes have a high impact on A. cf. poporum populations, leading to the removal of up to 36% of the population in 1 d. However, the low quality of the prey and predator selectivity in a more complex microbial community may reduce this impact.

[1]  H. Jeong,et al.  Gyrodinium moestrupii n. sp., A New Planktonic Heterotrophic Dinoflagellate from the Coastal Waters of Western Korea: Morphology and Ribosomal DNA Gene Sequence , 2012, The Journal of eukaryotic microbiology.

[2]  Bernd Krock,et al.  New azaspiracids in Amphidomataceae (Dinophyceae). , 2012, Toxicon : official journal of the International Society on Toxinology.

[3]  R. Akselman,et al.  Blooms of Azadinium cf. spinosum Elbrächter et Tillmann (Dinophyceae) in northern shelf waters of Argentina, Southwestern Atlantic , 2012 .

[4]  U. Tillmann,et al.  Amphidoma languida sp. nov. (Dinophyceae) reveals a close relationship between Amphidoma and Azadinium. , 2012, Protist.

[5]  U. Tillmann,et al.  TAXONOMIC REVISION OF THE DINOFLAGELLATE AMPHIDOMA CAUDATA: TRANSFER TO THE GENUS AZADINIUM (DINOPHYCEAE) AND PROPOSAL OF TWO VARIETIES, BASED ON MORPHOLOGICAL AND MOLECULAR PHYLOGENETIC ANALYSES 1 , 2012, Journal of phycology.

[6]  U. Tillmann,et al.  First Report of the Photosynthetic Dinoflagellate Genus Azadinium in the Pacific Ocean: Morphology and Molecular Characterization of Azadinium cf. poporum , 2012, The Journal of eukaryotic microbiology.

[7]  H. Jeong,et al.  Feeding by the Newly Described, Nematocyst‐Bearing Heterotrophic Dinoflagellate Gyrodiniellum shiwhaense , 2011, The Journal of eukaryotic microbiology.

[8]  H. Jeong,et al.  Grazing impact of heterotrophic dinoflagellates and ciliates on common red-tide euglenophyte Eutreptiella gymnastica in Masan Bay, Korea , 2011 .

[9]  Ø. Moestrup,et al.  Gyrodiniellum shiwhaense n. gen., n. sp., A New Planktonic Heterotrophic Dinoflagellate from the Coastal Waters of Western Korea: Morphology and Ribosomal DNA Gene Sequence , 2011, The Journal of eukaryotic microbiology.

[10]  U. Tillmann,et al.  A new non-toxic species in the dinoflagellate genus Azadinium: A. poporum sp. nov. , 2011 .

[11]  H. Jeong,et al.  Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs , 2010 .

[12]  H. Jeong,et al.  Ecology of Gymnodinium aureolum. II. Predation by common heterotrophic dinoflagellates and a ciliate , 2010 .

[13]  Hongbin Liu,et al.  Grazing and growth responses of a marine oligotrichous ciliate fed with two nanoplankton: does food quality matter for micrograzers? , 2010, Aquatic Ecology.

[14]  A. Cembella,et al.  Azadinium obesum (Dinophyceae), a new nontoxic species in the genus that can produce azaspiracid toxins , 2010 .

[15]  A. Cembella,et al.  Azadinium spinosum gen. et sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins , 2009 .

[16]  M. Twiner,et al.  Azaspiracid Shellfish Poisoning: A Review on the Chemistry, Ecology, and Toxicology with an Emphasis on Human Health Impacts , 2008, Marine drugs.

[17]  E. Sherr,et al.  Heterotrophic dinoflagellates: a significant component of microzooplankton biomass and major grazers of diatoms in the sea , 2007 .

[18]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[19]  Warren A. Kibbe,et al.  The issue of amalgams. , 1996, Nucleic Acids Res..

[20]  K. Nicolaou,et al.  Effects of azaspiracid-1, a potent cytotoxic agent, on primary neuronal cultures. A structure-activity relationship study. , 2007, Journal of medicinal chemistry.

[21]  H. Jeong,et al.  Distribution of the heterotrophic dinoflagellate Pfiesteria piscicida in Korean waters and its consumption of mixotrophic dinoflagellates, raphidophytes and fish blood cells , 2006 .

[22]  K. Nicolaou,et al.  Azaspiracids modulate intracellular pH levels in human lymphocytes. , 2006, Biochemical and biophysical research communications.

[23]  N. Kulagina,et al.  Azaspiracid-1 inhibits bioelectrical activity of spinal cord neuronal networks. , 2006, Toxicon : official journal of the International Society on Toxinology.

[24]  D. Anderson,et al.  Trophic accumulation of PSP toxins in zooplankton during Alexandrium fundyense blooms in Casco Bay, Gulf of Maine, April-June 1998. II. . Zooplankton abundance and size-fractionated community composition , 2005 .

[25]  Ilha Lee,et al.  Stoeckeria algicida n. gen., n. sp. (Dinophyceae) from the Coastal Waters off Southern Korea: Morphology and Small Subunit Ribosomal DNA Gene Sequence , 2005, The Journal of eukaryotic microbiology.

[26]  H. Jeong,et al.  Feeding and grazing impact of the newly described heterotrophic dinoflagellate Stoeckeria algicida on the harmful alga Heterosigma akashiwo , 2005 .

[27]  M. Satake,et al.  Teratogenic effects of azaspiracid-1 identified by microinjection of Japanese medaka (Oryzias latipes) embryos. , 2005, Toxicon : official journal of the International Society on Toxinology.

[28]  M. Satake,et al.  Cytotoxic and cytoskeletal effects of azaspiracid-1 on mammalian cell lines. , 2005, Toxicon : official journal of the International Society on Toxinology.

[29]  H. Jeong,et al.  Feeding by the heterotrophic dinoflagellates Gyrodinium dominans and G. spirale on the red-tide dinoflagellate Prorocentrum minimum , 2004 .

[30]  H. Jeong,et al.  Feeding by the Heterotrophic Dinoflagellate Oxyrrhis marina on the Red-Tide Raphidophyte Heterosigma akashiwo: a Potential Biological Method to Control Red Tides Using Mass-Cultured Grazers , 2003, The Journal of eukaryotic microbiology.

[31]  E. Saiz,et al.  Effect of heterotrophic versus autotrophic food on feeding and reproduction of the calanoid copepod Acartia tonsa : relationship with prey fatty acid composition , 2003 .

[32]  H. Jeong,et al.  Reduction in the toxicity of the dinoflagellate Gymnodinium catenatum when fed on by the heterotrophic dinoflagellate Polykrikos kofoidii , 2003 .

[33]  M. Satake,et al.  Ubiquitous 'benign' alga emerges as the cause of shellfish contamination responsible for the human toxic syndrome, azaspiracid poisoning. , 2003, Toxicon : official journal of the International Society on Toxinology.

[34]  M. Vieytes,et al.  Azaspiracid-1, a potent, nonapoptotic new phycotoxin with several cell targets. , 2002, Cellular signalling.

[35]  H. Dam,et al.  Coupling of ingestion and defecation as a function of diet in the calanoid copepod Acartia tonsa , 2002 .

[36]  M. Satake,et al.  Chronic effects in mice caused by oral administration of sublethal doses of azaspiracid, a new marine toxin isolated from mussels. , 2002, Toxicon : official journal of the International Society on Toxinology.

[37]  U. Tillmann,et al.  Dinoflagellate grazing on the raphidophyte Fibrocapsa japonica , 2002 .

[38]  H. Jeong,et al.  Interactions among the toxic dinoflagellate Amphidinium carterae, the heterotrophic dinoflagellate Oxyrrhis marina, and the calanoid copepods Acartia spp. , 2001 .

[39]  Susanne Menden-Deuer,et al.  Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton , 2000 .

[40]  H. Soh,et al.  A new species of Acartia (Copepoda, Calanoida) from the Yellow Sea , 2000 .

[41]  H. Jeong The Ecological Roles of Heterotrophic Dinoflagellates in Marine Planktonic Community 1 , 1999 .

[42]  D. Straile Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator‐prey weight ratio, and taxonomic group , 1997 .

[43]  P. K. Bjørnsen,et al.  Zooplankton grazing and growth: Scaling within the 2‐2,‐μm body size range , 1997 .

[44]  D. Montagnes Growth responses of planktonic ciliates in the genera Strobilidium and Strombidium , 1996 .

[45]  O. Setälä,et al.  Simultaneous measurement of food particle selection and clearance rates of planktonic oligotrich ciliates (Ciliophora: Oligotrichina) , 1995 .

[46]  P. K. Bjørnsen,et al.  The size ratio between planktonic predators and their prey , 1994 .

[47]  E. Buskey,et al.  Feeding, growth, and behavior of the thecate heterotrophic dinoflagellate Oblea rotunda , 1993 .

[48]  R. Guillard,et al.  SELECTIVE PREDATION BY FAVELLA EHRENBERGII (TINTINNIA) ON AND AMONG DINOFLAGELLATES , 1981 .

[49]  J. Heinbokel Studies on the functional role of tintinnids in the Southern California Bight. I. Grazing and growth rates in laboratory cultures , 1978 .

[50]  B. Frost EFFECTS OF SIZE AND CONCENTRATION OF FOOD PARTICLES ON THE FEEDING BEHAVIOR OF THE MARINE PLANKTONIC COPEPOD CALANUS PACIFICUS1 , 1972 .

[51]  A. Cembella,et al.  Characterization of azaspiracids in plankton size-fractions and isolation of an azaspiracid-producing dinoflagellate from the North Sea , 2009 .

[52]  P. Tester,et al.  Sublethal effects of the toxic dinoflagellate Karenia brevis on marine copepod behavior , 2007 .

[53]  S Rozen,et al.  Primer3 on the WWW for general users and for biologist programmers. , 2000, Methods in molecular biology.

[54]  L. Hutchings,et al.  Dynamics of bacterioplankton, phytoplankton and mesozooplankton communities during the development of an upwelling plume in the southern Benguela , 1993 .

[55]  B. C. Booth,et al.  Abundance, variability, and potential grazing impact of planktonic ciliates in the open subaratic Pacific Ocean , 1993 .

[56]  E. Lessard The trophic role of heterotrophic dinoflagellates in diverse marine environments , 1991 .

[57]  J. C. Goldman,et al.  Dynamics of herbivorous grazing by the heterotrophic dinoflagellate oxyrrhis marina , 1989 .

[58]  P. Verity Chemosensory behavior in marine planktonic ciliates , 1988 .

[59]  Román,et al.  Effects of food quality on the functional ingestion response of the copepod Acartia tonsa , 1987 .

[60]  T. Fenchel,et al.  Ecology of Protozoa: The Biology of Free-living Phagotrophic Protists , 1987 .

[61]  V. Garçon,et al.  The effect of zooplankton grazing on estuarine blooms of the toxic dinoflagellate Gonyaulax tamarensis , 1985 .

[62]  B. Mr EFFECTS OF SIZE AND CONCENTRATION OF FOOD PARTICLES ON THE FEEDING BEHAVIOR OF THE MARINE PLANKTONIC COPEPOD CALANUS PACIFICUS , 1972 .

[63]  J. H. Ryther,et al.  Studies of marine planktonic diatoms , 1962 .