Beyond the Uniqueness Assumption: Ambiguity Representation and Redundancy Elimination in the Computation of a Covering Sample of Salient Contour Cycles

Perceptual organization provides an intermediate representation of data by means of object- and goal-independent information. The lack of complete information makes perceptual organization an intrinsically ambiguous process which invalidates the uniqueness assumption and requires instead the generation of multiple solutions. This raises the issue of eliminating redundancies which, in a recursive algorithm, might otherwise cause combinatorial explosion of the search space. These aspects of perceptual organization are illustrated in the context of cycle detection in a contour graph. A provably correct algorithm for this problem is proposed.

[1]  Seth Hutchinson,et al.  A Probabilistic Approach to Perceptual Grouping , 1996, Comput. Vis. Image Underst..

[2]  Kim L. Boyer,et al.  A Computational Structure for Preattentive Perceptual Organization: Graphical Enumeration and Voting Methods , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[3]  David Mumford,et al.  The 2.1-D sketch , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[4]  David W. Jacobs,et al.  Robust and Efficient Detection of Salient Convex Groups , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  J. Brian Subirana-Vilanova,et al.  Adaptive Non-cartesian Networks for Vision , 1997, ICIAP.

[6]  Allen R. Hanson,et al.  Perceptual completion of occluded surfaces , 1996, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[7]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[8]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Sanjoy K. Mitter,et al.  An Efficient and Provably Correct Algorithm for the Multiscale Estimation of Image Contours by Means of Polygonal Lines , 1999, IEEE Trans. Inf. Theory.

[10]  Gérard G. Medioni,et al.  Inferring global perceptual contours from local features , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Radu Horaud,et al.  Figure-Ground Discrimination: A Combinatorial Optimization Approach , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Allen R. Hanson,et al.  Perceptual Completion of Occluded Surfaces , 1996, Comput. Vis. Image Underst..

[13]  Sanjoy K. Mitter,et al.  A hierarchical approach to high resolution edge contour reconstruction , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[14]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .

[15]  David Mumford,et al.  Filtering, Segmentation and Depth , 1993, Lecture Notes in Computer Science.

[16]  Sanjoy K. Mitter,et al.  Hierarchical Curve Reconstruction. Part I: Bifurcation analysis and Recovery of Smooth Curves , 1996, ECCV.

[17]  R. Nevatia,et al.  Perceptual Organization for Scene Segmentation and Description , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Edward M. Riseman,et al.  Computing curvilinear structure by token-based grouping , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Michael Lindenbaum,et al.  Quantitative Analysis of Grouping Processes , 1996, ECCV.

[20]  Shimon Ullman,et al.  Structural Saliency: The Detection Of Globally Salient Structures using A Locally Connected Network , 1988, [1988 Proceedings] Second International Conference on Computer Vision.

[21]  Rüdiger von der Heydt,et al.  A computational model of neural contour processing: Figure-ground segregation and illusory contours , 1993, 1993 (4th) International Conference on Computer Vision.

[22]  Decision Systems.,et al.  A perceptual organization approach to contour estimation via composition, compression and pruning , 1998 .

[23]  Jitendra Malik,et al.  Contour Continuity in Region Based Image Segmentation , 1998, ECCV.

[24]  Jitendra Malik,et al.  Normalized Cut and Image Segmentation , 1997 .

[25]  Davi Geiger,et al.  Visual Organization of Illusory Surfaces , 1996, ECCV.

[26]  Kim L. Boyer,et al.  Perceptual organization using Bayesian networks , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1995, Neural Computation.

[28]  J. Brian Subirana-Vilanova,et al.  Curved inertia frames and the skeleton sketch: Finding salient frames of reference , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[29]  Kim L. Boyer,et al.  Perceptual organization in computer vision: a review and a proposal for a classificatory structure , 1993, IEEE Trans. Syst. Man Cybern..

[30]  A. Witkin,et al.  On the Role of Structure in Vision , 1983 .

[31]  Donald Geman,et al.  An Active Testing Model for Tracking Roads in Satellite Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Steven W. Zucker,et al.  Computing Contour Closure , 1996, ECCV.

[33]  Tat-Jen Cham,et al.  Geometric Saliency of Curve Correspondances and Grouping of Symmetric Comntours , 1996, ECCV.