Consistency of magnetoencephalographic functional connectivity and network reconstruction using a template versus native MRI for co‐registration

Studies using functional connectivity and network analyses based on magnetoencephalography (MEG) with source localization are rapidly emerging in neuroscientific literature. However, these analyses currently depend on the availability of costly and sometimes burdensome individual MR scans for co‐registration. We evaluated the consistency of these measures when using a template MRI, instead of native MRI, for the analysis of functional connectivity and network topology.

[1]  C J Stam,et al.  The trees and the forest: Characterization of complex brain networks with minimum spanning trees. , 2014, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[2]  Gareth R. Barnes,et al.  Practical constraints on estimation of source extent with MEG beamformers , 2011, NeuroImage.

[3]  Gareth R. Barnes,et al.  Frequency-dependent functional connectivity within resting-state networks: An atlas-based MEG beamformer solution , 2012, NeuroImage.

[4]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[5]  C. Stam Modern network science of neurological disorders , 2014, Nature Reviews Neuroscience.

[6]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[7]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[8]  Chris Rorden,et al.  Age-specific CT and MRI templates for spatial normalization , 2012, NeuroImage.

[9]  J. Fleiss,et al.  Intraclass correlations: uses in assessing rater reliability. , 1979, Psychological bulletin.

[10]  O. Steinstraeter,et al.  Local sphere-based co-registration for SAM group analysis in subjects without individual MRI , 2009, Experimental Brain Research.

[11]  Alberto Fernández,et al.  Magnetoencephalographic parietal delta dipole density in mild cognitive impairment: preliminary results of a method to estimate the risk of developing Alzheimer disease. , 2006, Archives of neurology.

[12]  Gareth R. Barnes,et al.  The use of anatomical constraints with MEG beamformers , 2003, NeuroImage.

[13]  C. Stam,et al.  Disruption of structural and functional networks in long‐standing multiple sclerosis , 2014, Human brain mapping.

[14]  O. Zobay,et al.  Source Space Estimation of Oscillatory Power and Brain Connectivity in Tinnitus , 2015, PloS one.

[15]  Linda Douw,et al.  A Healthy Brain in a Healthy Body: Brain Network Correlates of Physical and Mental Fitness , 2014, PloS one.

[16]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[17]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[18]  Y. Hsu,et al.  Study-specific EPI template improves group analysis in functional MRI of young and older adults , 2010, Journal of Neuroscience Methods.

[19]  Antoine Lutti,et al.  High precision anatomy for MEG , 2014, NeuroImage.

[20]  G. Sandini,et al.  Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer's disease. , 2009, Brain : a journal of neurology.

[21]  Douglas G. Altman,et al.  Measurement in Medicine: The Analysis of Method Comparison Studies , 1983 .

[22]  K. McGraw,et al.  Forming inferences about some intraclass correlation coefficients. , 1996 .

[23]  R M Leahy,et al.  A sensor-weighted overlapping-sphere head model and exhaustive head model comparison for MEG. , 1999, Physics in medicine and biology.

[24]  John E. Richards,et al.  Age-specific MRI brain and head templates for healthy adults from 20 through 89 years of age , 2015, Front. Aging Neurosci..

[25]  Jay B. West,et al.  Predicting error in rigid-body point-based registration , 1998, IEEE Transactions on Medical Imaging.

[26]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[27]  C. Stam,et al.  Direction of information flow in large-scale resting-state networks is frequency-dependent , 2016, Proceedings of the National Academy of Sciences.

[28]  Noor Azina Ismail,et al.  Statistical Methods Used to Test for Agreement of Medical Instruments Measuring Continuous Variables in Method Comparison Studies: A Systematic Review , 2012, PloS one.

[29]  Krish D. Singh,et al.  Accuracy and applications of group MEG studies using cortical source locations estimated from participants' scalp surfaces , 2003, Human brain mapping.

[30]  M K Habib,et al.  Dynamics of neuronal firing correlation: modulation of "effective connectivity". , 1989, Journal of neurophysiology.

[31]  C. Stam,et al.  Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources , 2007, Human brain mapping.

[32]  Stefan Haufe,et al.  Consistency of EEG source localization and connectivity estimates , 2016, NeuroImage.

[33]  Arjan Hillebrand,et al.  Disrupted brain network topology in Parkinson's disease: a longitudinal magnetoencephalography study. , 2014, Brain : a journal of neurology.

[34]  G. Barnes,et al.  Realistic spatial sampling for MEG beamformer images , 2004, Human brain mapping.

[35]  Gareth R. Barnes,et al.  A verifiable solution to the MEG inverse problem , 2006, NeuroImage.

[36]  Siegfried Trattnig,et al.  A study-specific fMRI normalization approach that operates directly on high resolution functional EPI data at 7Tesla , 2014, NeuroImage.

[37]  Arjan Hillebrand,et al.  Beamformer analysis of MEG data. , 2005, International review of neurobiology.

[38]  Cornelis J Stam,et al.  Graph theoretical analysis of complex networks in the brain , 2007, Nonlinear biomedical physics.

[39]  A. Schnitzler,et al.  Normal and pathological oscillatory communication in the brain , 2005, Nature Reviews Neuroscience.

[40]  D. Louis Collins,et al.  Brain templates and atlases , 2012, NeuroImage.

[41]  Ricardo Bruña,et al.  Alpha-Band Hypersynchronization in Progressive Mild Cognitive Impairment: A Magnetoencephalography Study , 2014, The Journal of Neuroscience.

[42]  G. R. Barnes,et al.  A Quantitative Assessment of the Sensitivity of Whole-Head MEG to Activity in the Adult Human Cortex , 2002, NeuroImage.

[43]  A. Silman,et al.  Statistical methods for assessing observer variability in clinical measures. , 1992, BMJ.

[44]  Matthew J. Brookes,et al.  Relationships between cortical myeloarchitecture and electrophysiological networks , 2016, Proceedings of the National Academy of Sciences.

[45]  Krish D. Singh,et al.  A new approach to neuroimaging with magnetoencephalography , 2005, Human brain mapping.

[46]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Alan C. Evans,et al.  Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. , 2009, Cerebral cortex.

[48]  Edwin van Dellen,et al.  The minimum spanning tree: An unbiased method for brain network analysis , 2015, NeuroImage.

[49]  H. Berendse,et al.  Increased Resting-State Functional Connectivity in Obese Adolescents; A Magnetoencephalographic Pilot Study , 2008, PloS one.

[50]  Richard N. Henson,et al.  Adaptive Cortical Parcellations for Source Reconstructed EEG/MEG Connectomes , 2017 .

[51]  C. Stam,et al.  The effect of epoch length on estimated EEG functional connectivity and brain network organisation , 2016, Journal of neural engineering.

[52]  Se Robinson,et al.  Functional neuroimaging by Synthetic Aperture Magnetometry (SAM) , 1999 .

[53]  Ali R. Khan,et al.  External landmark and head-shape-based functional data normalization , 2009, Comput. Medical Imaging Graph..

[54]  Margot J. Taylor,et al.  Low-frequency connectivity is associated with mild traumatic brain injury , 2015, NeuroImage: Clinical.

[55]  S. Muthukumaraswamy High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations , 2013, Front. Hum. Neurosci..

[56]  C. Stam,et al.  Relation between carotid stiffness, cognitive performance and brain connectivity in a healthy middle-aged population: an observational neurophysiological cohort study with magnetoencephalography , 2016, BMJ Open.

[57]  Karl J. Friston Functional and effective connectivity in neuroimaging: A synthesis , 1994 .

[58]  Linda Douw,et al.  Local MEG networks: The missing link between protein expression and epilepsy in glioma patients? , 2013, NeuroImage.

[59]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[60]  K. D. Singh,et al.  Co-registration of magnetoencephalography with magnetic resonance imaging using bite-bar-based fiducials and surface-matching , 2004, Clinical Neurophysiology.

[61]  Matthew J. Brookes,et al.  Optimising experimental design for MEG resting state functional connectivity measurement , 2017, NeuroImage.

[62]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[63]  John E. Richards,et al.  A database of age-appropriate average MRI templates , 2016, NeuroImage.

[64]  Jens Haueisen,et al.  Comparison of three-shell and simplified volume conductor models in magnetoencephalography , 2014, NeuroImage.

[65]  Edwin van Dellen,et al.  Structural degree predicts functional network connectivity: A multimodal resting-state fMRI and MEG study , 2014, NeuroImage.

[66]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.