Nonlinear time reversal of classical waves: experiment and model.

We consider time reversal of electromagnetic waves in a closed, wave-chaotic system containing a discrete, passive, harmonic-generating nonlinearity. An experimental system is constructed as a time-reversal mirror, in which excitations generated by the nonlinearity are gathered, time-reversed, transmitted, and directed exclusively to the location of the nonlinearity. Here we show that such nonlinear objects can be purely passive (as opposed to the active nonlinearities used in previous work), and we develop a higher data rate exclusive communication system based on nonlinear time reversal. A model of the experimental system is developed, using a star-graph network of transmission lines, with one of the lines terminated by a model diode. The model simulates time reversal of linear and nonlinear signals, demonstrates features seen in the experimental system, and supports our interpretation of the experimental results.

[1]  J L Thomas,et al.  Breaking of time reversal invariance in nonlinear acoustics. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Steven M Anlage,et al.  Unified model and reverse recovery nonlinearities of the driven diode resonator. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Thomas M. Antonsen,et al.  Quantifying volume changing perturbations in a wave chaotic system , 2012, 1208.5445.

[4]  Thomas M. Antonsen,et al.  SENSING SMALL CHANGES IN A WAVE CHAOTIC SCATTERING SYSTEM AND ENHANCING WAVE FOCUSING USING TIME REVERSAL MIRRORS , 2010, 1008.2409.

[5]  Antonio Gliozzi,et al.  Nonlinear acoustic time reversal imaging using the scaling subtraction method , 2008 .

[6]  Edward Ott,et al.  Universal impedance fluctuations in wave chaotic systems. , 2005, Physical review letters.

[7]  U. Smilansky,et al.  Quantum graphs: Applications to quantum chaos and universal spectral statistics , 2006, nlin/0605028.

[8]  Thomas M. Antonsen,et al.  Statistical Prediction and Measurement of Induced Voltages on Components Within Complicated Enclosures: A Wave-Chaotic Approach , 2012, IEEE Transactions on Electromagnetic Compatibility.

[9]  Mickael Tanter,et al.  Time-reversed acoustics , 2000 .

[10]  Thomas M. Antonsen,et al.  Sensor based on extending the concept of fidelity to classical waves , 2008, 0812.1118.

[11]  D. Jackson,et al.  Phase conjugation in underwater acoustics , 1991 .

[12]  T J Ulrich,et al.  Interaction dynamics of elastic waves with a complex nonlinear scatterer through the use of a time reversal mirror. , 2007, Physical review letters.

[13]  T. Antonsen,et al.  Nonlinear time reversal in a wave chaotic system. , 2012, Physical review letters.

[14]  M. Fink,et al.  One-Channel Time Reversal of Elastic Waves in a Chaotic 2D-Silicon Cavity , 1997 .

[15]  Thomas M. Antonsen,et al.  New Results in Chaotic Time-Reversed Electromagnetics: High Frequency One-Recording-Channel Time-Reversal Mirror , 2007 .

[16]  Mathias Fink,et al.  Time-reversal acoustics in complex environments , 2006 .

[17]  M. Scalerandi,et al.  Efficiency of time-reversed acoustics for nonlinear damage detection in solids , 2006 .

[18]  Alexander Sutin,et al.  Imaging nonlinear scatterers applying the time reversal mirror , 2006 .

[19]  G. Lerosey,et al.  Focusing Beyond the Diffraction Limit with Far-Field Time Reversal , 2007, Science.

[20]  A. Parvulescu Matched‐signal (‘‘MESS’’) processing by the ocean , 1995 .

[21]  Lihong V. Wang,et al.  Time-reversed ultrasonically encoded optical focusing into scattering media , 2010, Nature photonics.

[22]  O. Matar,et al.  Non-linear based time reversal acoustic applied to crack detection: Simulations and experiments , 2008 .

[23]  E. Ott,et al.  Chaotic Time-Reversed Acoustics: Sensitivity οf the Loschmidt Echo to Perturbations , 2009 .

[24]  Daniel J Gauthier,et al.  Ultra-high-frequency chaos in a time-delay electronic device with band-limited feedback. , 2006, Chaos.

[25]  Demetri Psaltis,et al.  Three-dimensional scanning microscopy through thin turbid media. , 2012, Optics express.

[26]  Demetri Psaltis,et al.  Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. , 2010, Optics express.

[27]  G. Lerosey,et al.  Time reversal of electromagnetic waves. , 2004, Physical review letters.

[28]  Mw Hirsch,et al.  Chaos In Dynamical Systems , 2016 .

[29]  Focused nonlinear phase-conjugate waves generated by a solid parametric amplifier , 2005 .

[30]  H. Stöckmann,et al.  Quantum Chaos: An Introduction , 1999 .

[31]  Renato Mariz de Moraes,et al.  Effects of UHF stimulus and negative feedback on nonlinear circuits , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  G. Lerosey,et al.  Resonant metalenses for breaking the diffraction barrier. , 2010, Physical review letters.

[33]  B. E. Anderson,et al.  Probing the interior of a solid volume with time reversal and nonlinear elastic wave spectroscopy. , 2011, The Journal of the Acoustical Society of America.

[34]  Daniel J Gauthier,et al.  Subwavelength position sensing using nonlinear feedback and wave chaos. , 2011, Physical review letters.

[35]  Francesco Ciampa,et al.  Nonlinear elastic imaging using reciprocal time reversal and third order symmetry analysis. , 2012, The Journal of the Acoustical Society of America.

[36]  Mathias Fink,et al.  Acoustic resonators for far-field control of sound on a subwavelength scale. , 2011, Physical review letters.

[37]  Quantum graphs: a simple model for chaotic scattering , 2002, nlin/0207049.

[38]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[39]  Andrew G. Glen,et al.  APPL , 2001 .

[40]  Edward Ott,et al.  Iterative time reversal with tunable convergence , 2011, 1107.1425.

[41]  Hongkai Zhao,et al.  Super-resolution in time-reversal acoustics. , 2002, The Journal of the Acoustical Society of America.