Semi-varying coefficient models with a diverging number of components
暂无分享,去创建一个
Heng Lian | Gaorong Li | Liugen Xue | H. Lian | Gaorong Li | L. Xue
[1] S. Geer,et al. High-dimensional additive modeling , 2008, 0806.4115.
[2] Larry A. Wasserman,et al. SpAM: Sparse Additive Models , 2007, NIPS.
[3] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[4] R. Tibshirani,et al. Varying‐Coefficient Models , 1993 .
[5] A. Welsh. On $M$-Processes and $M$-Estimation , 1989 .
[6] J. Horowitz,et al. Asymptotic properties of bridge estimators in sparse high-dimensional regression models , 2008, 0804.0693.
[7] C. J. Stone,et al. Additive Regression and Other Nonparametric Models , 1985 .
[8] D. Cox. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach , 1993 .
[9] Susan A. Murphy,et al. Monographs on statistics and applied probability , 1990 .
[10] Jianhua Z. Huang,et al. Polynomial Spline Estimation and Inference for Varying Coefficient Models with Longitudinal Data , 2003 .
[11] Jianhua Z. Huang,et al. Variable Selection in Nonparametric Varying-Coefficient Models for Analysis of Repeated Measurements , 2008, Journal of the American Statistical Association.
[12] Jianqing Fan,et al. Nonconcave penalized likelihood with a diverging number of parameters , 2004, math/0406466.
[13] M. Yuan,et al. Model selection and estimation in the Gaussian graphical model , 2007 .
[14] S. Portnoy. Asymptotic behavior of M-estimators of p regression parameters when p , 1985 .
[15] Lixing Zhu,et al. NONCONCAVE PENALIZED M-ESTIMATION WITH A DIVERGING NUMBER OF PARAMETERS , 2011 .
[16] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[17] H. Zou,et al. One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.
[18] V. Yohai,et al. ASYMPTOTIC BEHAVIOR OF M-ESTIMATORS FOR THE LINEAR MODEL , 1979 .
[19] Cun-Hui Zhang,et al. The sparsity and bias of the Lasso selection in high-dimensional linear regression , 2008, 0808.0967.
[20] Jianhua Z. Huang. Local asymptotics for polynomial spline regression , 2003 .
[21] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[22] P. J. Huber. Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .
[23] S. Portnoy. Asymptotic Behavior of $M$-Estimators of $p$ Regression Parameters when $p^2/n$ is Large. I. Consistency , 1984 .
[24] Runze Li,et al. Variable Selection in Semiparametric Regression Modeling. , 2008, Annals of statistics.
[25] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[26] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[27] R. Tibshirani,et al. Generalized Additive Models , 1991 .
[28] Chenlei Leng,et al. Shrinkage tuning parameter selection with a diverging number of parameters , 2008 .
[29] Jian Huang,et al. SCAD-penalized regression in high-dimensional partially linear models , 2009, 0903.5474.
[30] J. Horowitz,et al. VARIABLE SELECTION IN NONPARAMETRIC ADDITIVE MODELS. , 2010, Annals of statistics.