The Fractional Relative Capacity and the Fractional Laplacian with Neumann and Robin Boundary Conditions on Open Sets
暂无分享,去创建一个
[1] Marta D'Elia,et al. The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator , 2013, Comput. Math. Appl..
[2] Krzysztof Bogdan,et al. Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains , 1999 .
[3] Richard B. Lehoucq,et al. A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems , 2010, Multiscale Model. Simul..
[4] Kun Zhou,et al. Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..
[5] M. Fukushima,et al. On Sobolev and Capacitary Inequalities for Contractive Besov Spaces over d-sets , 2003 .
[6] D. Gilbarg,et al. Elliptic Partial Differential Equa-tions of Second Order , 1977 .
[7] Xavier Ros-Oton,et al. The Pohozaev Identity for the Fractional Laplacian , 2012, 1207.5986.
[8] A. G. O'Farrell,et al. FUNCTION SPACES AND POTENTIAL THEORY (Grundlehren der mathematischen Wissenschaften 314) By David R. Adams and Lars Inge Hedberg: 366 pp., DM.148., ISBN 3 540 57060 8 (Springer, 1996) , 1997 .
[9] Zhi-Ming Ma,et al. Reflected Symmetric α-Stable Processes and Regional Fractional Laplacian , 2006 .
[10] Peter W. Jones. Quasiconformal mappings and extendability of functions in sobolev spaces , 1981 .
[11] Martin Alexander Youngson,et al. Linear Functional Analysis , 2000 .
[12] H. Beckert,et al. J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .
[13] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[14] L. Caffarelli,et al. An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.
[15] M. Warma,et al. Some quasi-linear elliptic equations with inhomogeneous generalized Robin boundary conditions on "bad" domains , 2010, Advances in Differential Equations.
[16] Luis Silvestre,et al. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian , 2007, math/0702392.
[17] Zhen-Qing Chen,et al. Heat kernel estimates for stable-like processes on d-sets , 2003 .
[18] W. Farkas,et al. Sobolev Spaces on Non Smooth Domains and Dirichlet Forms Related to Subordinate Reflecting Diffusions , 2001 .
[19] D. Applebaum. Lévy Processes and Stochastic Calculus: Preface , 2009 .
[20] E. Stein. Singular Integrals and Di?erentiability Properties of Functions , 1971 .
[21] Daniel Daners,et al. Robin boundary value problems on arbitrary domains , 2000 .
[22] J. Doob. Classical potential theory and its probabilistic counterpart , 1984 .
[23] Jinqiao Duan,et al. Fractional Fokker-Planck Equation for Nonlinear Stochastic Differential Equations Driven by Non-Gaussian Levy Stable Noises , 1999, math/0409486.
[24] A. Figalli,et al. Nonlocal Tug‐of‐War and the Infinity Fractional Laplacian , 2010, 1011.1966.
[25] Xavier Ros-Oton,et al. Fractional Laplacian: Pohozaev identity and nonexistence results , 2012, 1205.0494.
[26] Raymond Johnson,et al. Sobolev spaces , 1987 .
[27] E. Davies,et al. Heat kernels and spectral theory , 1989 .
[28] R. Chill,et al. Dirichlet and Neumann boundary conditions for the p-Laplace operator: what is in between? , 2012, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[29] J. Lions,et al. Non-homogeneous boundary value problems and applications , 1972 .
[30] Xavier Ros-Oton,et al. The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary , 2012, 1207.5985.
[31] W. Arendt,et al. Dirichlet and Neumann boundary conditions: What is in between? , 2003 .
[32] M. Fukushima,et al. Dirichlet forms and symmetric Markov processes , 1994 .
[33] E. Valdinoci,et al. Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.
[34] G. Choquet. Theory of capacities , 1954 .
[35] Jean-Michel Roquejoffre,et al. Variational problems with free boundaries for the fractional Laplacian , 2010 .
[36] N. Jacob,et al. On the Dirichlet Problem for Pseudodifferential Operators Generating Feller Semigroups , 1996 .
[37] L. Hedberg,et al. Function Spaces and Potential Theory , 1995 .
[38] Qiang Du,et al. Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .
[39] G. Stampacchia,et al. Boundary value problems for some degenerate-elliptic operators , 1968 .
[40] P. Drábek,et al. A priori estimates for a class of quasi-linear elliptic equations , 2009 .
[41] Zhi-Ming Ma,et al. BOUNDARY PROBLEMS FOR FRACTIONAL LAPLACIANS , 2005 .
[42] H. Triebel. Interpolation Theory, Function Spaces, Differential Operators , 1978 .
[43] D. Danielli,et al. Non-doubling Ahlfors Measures, Perimeter Measures, And the Characterization of the Trace Spaces of Sobolev Functions in Carnot-caratheodory Spaces , 2006 .
[44] M. Warma,et al. A class of quasi-linear parabolic and elliptic equations with nonlocal Robin boundary conditions , 2010 .
[45] Mahamadi Warma,et al. The p-Laplace operator with the nonlocal Robin boundary conditions on arbitrary open sets , 2014 .
[46] Robert Nürnberg,et al. Linear Functional Analysis: An Application-Oriented Introduction , 2016 .
[47] Qing-Yang Guan,et al. Integration by Parts Formula for Regional Fractional Laplacian , 2006 .
[48] Mark A. McComb. A Practical Guide to Heavy Tails , 2000, Technometrics.
[50] John Taylor. POTENTIAL THEORY An Analytic and Probabilistic Approach to Balayage (Universitext) , 1987 .
[51] W. Arendt,et al. The Laplacian with Robin Boundary Conditions on Arbitrary Domains , 2003 .
[52] Jaak Peetre,et al. Function spaces on subsets of Rn , 1984 .
[53] M. Warma,et al. The heat equation with nonlinear generalized Robin boundary conditions , 2009 .
[54] Xavier Ros-Oton,et al. The extremal solution for the fractional Laplacian , 2013, 1305.2489.