The Fractional Relative Capacity and the Fractional Laplacian with Neumann and Robin Boundary Conditions on Open Sets

Let Ω⊂ℝN$\Omega \subset \mathbb {R}^{N}$ be an arbitrary open set with boundary ∂Ω. Let p∈[1,∞)$p\in [1,\infty )$ and s∈(0,1). In the first part of the article we give some useful properties of the fractional order Sobolev spaces. We define a relative (s,p)-capacity on Ω¯$\overline {\Omega }$ with the fractional order Sobolev spaces, give its properties and its connection with the classical Bessel (s,p)-capacity and the Hausdorff measure. We also use the relative capacity to characterize completely the zero trace fractional order Sobolev spaces. In the second part of the article, we clarify the Neumann and Robin boundary conditions associated with the fractional Laplace operator on open subsets of ℝN$\mathbb {R}^{N}$. Contrary to the classical Laplace operator, it turns out that Dirichlet, Neumann and Robin boundary conditions may coincide for the fractional Laplacian on bounded domains. In the last part of the article we consider some nonlocal elliptic problems associated with the fractional Laplacian with Neumann and Robin type boundary conditions. We show some existence and regularity results of weak solutions on non smooth domains.

[1]  Marta D'Elia,et al.  The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator , 2013, Comput. Math. Appl..

[2]  Krzysztof Bogdan,et al.  Potential theory for the α-stable Schrödinger operator on bounded Lipschitz domains , 1999 .

[3]  Richard B. Lehoucq,et al.  A Nonlocal Vector Calculus with Application to Nonlocal Boundary Value Problems , 2010, Multiscale Model. Simul..

[4]  Kun Zhou,et al.  Analysis and Approximation of Nonlocal Diffusion Problems with Volume Constraints , 2012, SIAM Rev..

[5]  M. Fukushima,et al.  On Sobolev and Capacitary Inequalities for Contractive Besov Spaces over d-sets , 2003 .

[6]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[7]  Xavier Ros-Oton,et al.  The Pohozaev Identity for the Fractional Laplacian , 2012, 1207.5986.

[8]  A. G. O'Farrell,et al.  FUNCTION SPACES AND POTENTIAL THEORY (Grundlehren der mathematischen Wissenschaften 314) By David R. Adams and Lars Inge Hedberg: 366 pp., DM.148., ISBN 3 540 57060 8 (Springer, 1996) , 1997 .

[9]  Zhi-Ming Ma,et al.  Reflected Symmetric α-Stable Processes and Regional Fractional Laplacian , 2006 .

[10]  Peter W. Jones Quasiconformal mappings and extendability of functions in sobolev spaces , 1981 .

[11]  Martin Alexander Youngson,et al.  Linear Functional Analysis , 2000 .

[12]  H. Beckert,et al.  J. L. Lions and E. Magenes, Non‐Homogeneous Boundary Value Problems and Applications, II. (Die Grundlehren d. Math. Wissenschaften, Bd. 182). XI + 242 S. Berlin/Heidelberg/New York 1972. Springer‐Verlag. Preis geb. DM 58,— , 1973 .

[13]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[14]  L. Caffarelli,et al.  An Extension Problem Related to the Fractional Laplacian , 2006, math/0608640.

[15]  M. Warma,et al.  Some quasi-linear elliptic equations with inhomogeneous generalized Robin boundary conditions on "bad" domains , 2010, Advances in Differential Equations.

[16]  Luis Silvestre,et al.  Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian , 2007, math/0702392.

[17]  Zhen-Qing Chen,et al.  Heat kernel estimates for stable-like processes on d-sets , 2003 .

[18]  W. Farkas,et al.  Sobolev Spaces on Non Smooth Domains and Dirichlet Forms Related to Subordinate Reflecting Diffusions , 2001 .

[19]  D. Applebaum Lévy Processes and Stochastic Calculus: Preface , 2009 .

[20]  E. Stein Singular Integrals and Di?erentiability Properties of Functions , 1971 .

[21]  Daniel Daners,et al.  Robin boundary value problems on arbitrary domains , 2000 .

[22]  J. Doob Classical potential theory and its probabilistic counterpart , 1984 .

[23]  Jinqiao Duan,et al.  Fractional Fokker-Planck Equation for Nonlinear Stochastic Differential Equations Driven by Non-Gaussian Levy Stable Noises , 1999, math/0409486.

[24]  A. Figalli,et al.  Nonlocal Tug‐of‐War and the Infinity Fractional Laplacian , 2010, 1011.1966.

[25]  Xavier Ros-Oton,et al.  Fractional Laplacian: Pohozaev identity and nonexistence results , 2012, 1205.0494.

[26]  Raymond Johnson,et al.  Sobolev spaces , 1987 .

[27]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[28]  R. Chill,et al.  Dirichlet and Neumann boundary conditions for the p-Laplace operator: what is in between? , 2012, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[29]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[30]  Xavier Ros-Oton,et al.  The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary , 2012, 1207.5985.

[31]  W. Arendt,et al.  Dirichlet and Neumann boundary conditions: What is in between? , 2003 .

[32]  M. Fukushima,et al.  Dirichlet forms and symmetric Markov processes , 1994 .

[33]  E. Valdinoci,et al.  Hitchhiker's guide to the fractional Sobolev spaces , 2011, 1104.4345.

[34]  G. Choquet Theory of capacities , 1954 .

[35]  Jean-Michel Roquejoffre,et al.  Variational problems with free boundaries for the fractional Laplacian , 2010 .

[36]  N. Jacob,et al.  On the Dirichlet Problem for Pseudodifferential Operators Generating Feller Semigroups , 1996 .

[37]  L. Hedberg,et al.  Function Spaces and Potential Theory , 1995 .

[38]  Qiang Du,et al.  Mathematical Models and Methods in Applied Sciences c ○ World Scientific Publishing Company Sandia National Labs SAND 2010-8353J A NONLOCAL VECTOR CALCULUS, NONLOCAL VOLUME-CONSTRAINED PROBLEMS, AND NONLOCAL BALANCE LAWS , 2022 .

[39]  G. Stampacchia,et al.  Boundary value problems for some degenerate-elliptic operators , 1968 .

[40]  P. Drábek,et al.  A priori estimates for a class of quasi-linear elliptic equations , 2009 .

[41]  Zhi-Ming Ma,et al.  BOUNDARY PROBLEMS FOR FRACTIONAL LAPLACIANS , 2005 .

[42]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[43]  D. Danielli,et al.  Non-doubling Ahlfors Measures, Perimeter Measures, And the Characterization of the Trace Spaces of Sobolev Functions in Carnot-caratheodory Spaces , 2006 .

[44]  M. Warma,et al.  A class of quasi-linear parabolic and elliptic equations with nonlocal Robin boundary conditions , 2010 .

[45]  Mahamadi Warma,et al.  The p-Laplace operator with the nonlocal Robin boundary conditions on arbitrary open sets , 2014 .

[46]  Robert Nürnberg,et al.  Linear Functional Analysis: An Application-Oriented Introduction , 2016 .

[47]  Qing-Yang Guan,et al.  Integration by Parts Formula for Regional Fractional Laplacian , 2006 .

[48]  Mark A. McComb A Practical Guide to Heavy Tails , 2000, Technometrics.

[49]  Fractional Derivatives and Fractional Powers as Tools in Understanding Wentzell Boundary Value Problems for Pseudo-Differential Operators Generating Markov Processes , 2005 .

[50]  John Taylor POTENTIAL THEORY An Analytic and Probabilistic Approach to Balayage (Universitext) , 1987 .

[51]  W. Arendt,et al.  The Laplacian with Robin Boundary Conditions on Arbitrary Domains , 2003 .

[52]  Jaak Peetre,et al.  Function spaces on subsets of Rn , 1984 .

[53]  M. Warma,et al.  The heat equation with nonlinear generalized Robin boundary conditions , 2009 .

[54]  Xavier Ros-Oton,et al.  The extremal solution for the fractional Laplacian , 2013, 1305.2489.