Space-Filling Designs for Computer Experiments

This chapter and the next discuss how to select inputs at which to compute the output of a computer experiment to achieve specific goals. The inputs one selects constitute the “experimental design.” As in previous chapters, the inputs are referred to as “runs.” The region corresponding to the values of the inputs that is to be studied is called the experimental region. A point in this region corresponds to a specific set of values of the inputs. Thus, an experimental design is a specification of points (runs) in the experimental region at which the response is to be computed.

[1]  J A John,et al.  Cyclic Designs , 1987 .

[2]  I. Sobol Uniformly distributed sequences with an additional uniform property , 1976 .

[3]  P. Laycock,et al.  Optimum Experimental Designs , 1995 .

[4]  Boxin Tang Orthogonal Array-Based Latin Hypercubes , 1993 .

[5]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[6]  Yong Zhang,et al.  Uniform Design: Theory and Application , 2000, Technometrics.

[7]  Michael Goldstein,et al.  Bayesian Forecasting for Complex Systems Using Computer Simulators , 2001 .

[8]  Sidney Addelman,et al.  trans-Dimethanolbis(1,1,1-trifluoro-5,5-dimethylhexane-2,4-dionato)zinc(II) , 2008, Acta crystallographica. Section E, Structure reports online.

[9]  S. Silvey Optimal Design: An Introduction to the Theory for Parameter Estimation , 1980 .

[10]  T. J. Mitchell,et al.  Exploratory designs for computational experiments , 1995 .

[11]  Peter W. M. John,et al.  Incomplete Block Designs. , 1982 .

[12]  Jerome Sacks,et al.  Integrated circuit design optimization using a sequential strategy , 1992, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[13]  S. M. Handcock On cascading latin hypercube designs and additive models for experiments , 1991 .

[14]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[15]  A. Owen A Central Limit Theorem for Latin Hypercube Sampling , 1992 .

[16]  Fred J. Hickernell,et al.  A generalized discrepancy and quadrature error bound , 1998, Math. Comput..

[17]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[18]  H. Niederreiter Low-discrepancy and low-dispersion sequences , 1988 .

[19]  Dick den Hertog,et al.  Constrained Maximin Designs for Computer Experiments , 2003, Technometrics.

[20]  Henry P. Wynn,et al.  Screening, predicting, and computer experiments , 1992 .

[21]  Eva Riccomagno,et al.  Experimental Design and Observation for Large Systems , 1996, Journal of the Royal Statistical Society: Series B (Methodological).

[22]  A. O'Hagan,et al.  Predicting the output from a complex computer code when fast approximations are available , 2000 .

[23]  Harald Niederreiter,et al.  Programs to generate Niederreiter's low-discrepancy sequences , 1994, TOMS.

[24]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[25]  J. Sacks,et al.  Artic sea ice variability: Model sensitivities and a multidecadal simulation , 1994 .

[26]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[27]  M. Stein Large sample properties of simulations using latin hypercube sampling , 1987 .

[28]  W. Welch ACED: Algorithms for the Construction of Experimental Designs , 1985 .

[29]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[30]  D. Wiens Designs for approximately linear regression: two optimality properties of uniform designs , 1991 .

[31]  Jeong‐Soo Park Optimal Latin-hypercube designs for computer experiments , 1994 .

[32]  D. Raghavarao Constructions and Combinatorial Problems in Design of Experiments , 1971 .

[33]  A. Street,et al.  Combinatorics of experimental design , 1987 .

[34]  M. E. Johnson,et al.  Minimax and maximin distance designs , 1990 .

[35]  Neil A. Butler,et al.  Optimal and orthogonal Latin hypercube designs for computer experiments , 2001 .

[36]  Kenny Q. Ye,et al.  Algorithmic construction of optimal symmetric Latin hypercube designs , 2000 .

[37]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[38]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[39]  A. O'Hagan,et al.  Bayesian calibration of computer models , 2001 .

[40]  Kenny Q. Ye Orthogonal Column Latin Hypercubes and Their Application in Computer Experiments , 1998 .

[41]  N. J. A. Sloane,et al.  Tables of Orthogonal Arrays , 1999 .