Tidal Disruptions of Stars by Binary Black Holes: Modifying the Spin Magnitudes and Directions of LIGO Sources in Dense Stellar Environments

Binary black holes (BBHs) appear to be widespread and are able to merge through the emission of gravitational waves, as recently illustrated by LIGO. The spin of the BBHs is one of the parameters that LIGO can infer from the gravitational wave signal and can be used to constrain their production site. If BBHs are assembled in stellar clusters they are likely to interact with stars, which could occasionally lead to a tidal disruption event (TDE). When a BBH tidally disrupts a star it can accrete a significant fraction of the debris, effectively altering the spins of the BHs. Therefore, although dynamically formed BBHs are expected to have random spin orientations, tidal stellar interactions can significantly alter their birth spins both in direction and magnitude. Here we investigate how TDEs by BBHs can affect the properties of the BH members as well as exploring the characteristics of the resulting electromagnetic signatures. We conduct hydrodynamic simulations with a Lagrangian Smoothed Particle Hydrodynamics code of a wide range of representative tidal interactions. We find that both spin magnitude and orientation can be altered and temporarily aligned or anti-aligned through accretion of stellar debris, with a significant dependence on the mass ratio of the disrupted star and the BBH members. These tidal interactions feed material to the BBH at very high accretion rates, with the potential to launch a relativistic jet. The corresponding beamed emission is a beacon to an otherwise quiescent BBH.

[1]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[2]  B. Metzger,et al.  Constraining Stellar-mass Black Hole Mergers in AGN Disks Detectable with LIGO , 2018, The Astrophysical Journal.

[3]  Charles R. Evans,et al.  The tidal disruption of a star by a massive black hole , 1989 .

[4]  Douglas C. Heggie,et al.  On black hole subsystems in idealized nuclear star clusters , 2013, 1308.4641.

[5]  A. Loeb,et al.  Circularization of Tidally Disrupted Stars around Spinning Supermassive Black Holes , 2015, 1501.05207.

[6]  Bence Kocsis,et al.  Black Hole Mergers in Galactic Nuclei Induced by the Eccentric Kozai–Lidov Effect , 2017, 1706.09896.

[7]  Abraham Loeb,et al.  ELECTROMAGNETIC COUNTERPARTS TO BLACK HOLE MERGERS DETECTED BY LIGO , 2016, 1602.04735.

[8]  Galactic distribution of merging neutron stars and black holes – prospects for short gamma-ray burst progenitors and LIGO/VIRGO , 2003, astro-ph/0303227.

[9]  Bence Kocsis,et al.  Gravitational waves from scattering of stellar-mass black holes in galactic nuclei , 2008, 0807.2638.

[10]  E. Ramirez-Ruiz,et al.  Gamma-Ray Bursts in the Swift Era , 2009, 0909.1531.

[11]  J. Guillochon,et al.  THE DYNAMICS, APPEARANCE, AND DEMOGRAPHICS OF RELATIVISTIC JETS TRIGGERED BY TIDAL DISRUPTION OF STARS IN QUIESCENT SUPERMASSIVE BLACK HOLES , 2012, 1205.1507.

[12]  Johan Samsing,et al.  Double gravitational wave mergers , 2017, Monthly Notices of the Royal Astronomical Society.

[13]  M. Livio,et al.  COMMON ENVELOPES IN BINARY STAR EVOLUTION , 1993 .

[14]  Israel,et al.  Multiband light curves of tidal disruption events , 2010, 1008.4589.

[15]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES , 2012, 1202.4901.

[16]  Enrico Ramirez-Ruiz,et al.  Eccentric Black Hole Mergers in Dense Star Clusters: The Role of Binary–Binary Encounters , 2018, The Astrophysical Journal.

[17]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[18]  J. Bardeen,et al.  The Lense-Thirring Effect and Accretion Disks around Kerr Black Holes , 1975 .

[19]  Ryan M. O'Leary,et al.  DYNAMICAL FORMATION SIGNATURES OF BLACK HOLE BINARIES IN THE FIRST DETECTED MERGERS BY LIGO , 2016, 1602.02809.

[20]  M. Giersz,et al.  Compact binaries in star clusters – II. Escapers and detection rates , 2010, 1008.5060.

[21]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. II. COSMOLOGICAL MERGER RATES , 2013, 1308.1546.

[22]  J. Lombardi,et al.  MICRO-TIDAL DISRUPTION EVENTS BY STELLAR COMPACT OBJECTS AND THE PRODUCTION OF ULTRA-LONG GRBs , 2016, 1602.07698.

[23]  P. Jakobsson,et al.  A NEW POPULATION OF ULTRA-LONG DURATION GAMMA-RAY BURSTS , 2013, 1302.2352.

[24]  M. Branchesi,et al.  Dynamics of stellar black holes in young star clusters with different metallicities – II. Black hole–black hole binaries , 2014, 1404.7147.

[25]  I. Mandel,et al.  THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.

[26]  Bence Kocsis,et al.  Eccentric Black Hole Gravitational-wave Capture Sources in Galactic Nuclei: Distribution of Binary Parameters , 2017, The Astrophysical Journal.

[27]  E. Ramirez-Ruiz,et al.  Black Hole Formation in Fallback Supernova and the Spins of LIGO Sources , 2018, The Astrophysical Journal.

[28]  D. Richardson,et al.  THE ROLE OF THE KOZAI–LIDOV MECHANISM IN BLACK HOLE BINARY MERGERS IN GALACTIC CENTERS , 2016, 1604.04948.

[29]  Enrico Ramirez-Ruiz,et al.  HYDRODYNAMICAL SIMULATIONS TO DETERMINE THE FEEDING RATE OF BLACK HOLES BY THE TIDAL DISRUPTION OF STARS: THE IMPORTANCE OF THE IMPACT PARAMETER AND STELLAR STRUCTURE , 2012, 1206.2350.

[30]  Ilya Mandel,et al.  University of Birmingham Distinguishing Spin-Aligned and Isotropic Black Hole Populations With Gravitational Waves , 2017 .

[31]  I. Mandel,et al.  The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO , 2016, 1603.02291.

[32]  A. Ghez,et al.  Merging Binaries in the Galactic Center: The eccentric Kozai-Lidov mechanism with stellar evolution , 2016, 1603.02709.

[33]  Chris L. Fryer,et al.  Common envelope evolution: where we stand and how we can move forward , 2012, The Astronomy and Astrophysics Review.

[34]  Steinn Sigurdsson,et al.  Primordial black holes in globular clusters , 1993, Nature.

[35]  T. Bulik,et al.  MOCCA-SURVEY Database - I. Coalescing binary black holes originating from globular clusters , 2016, 1608.02520.

[36]  Enrico Ramirez-Ruiz,et al.  Weighing Black Holes Using Tidal Disruption Events , 2018, The Astrophysical Journal.

[37]  M. Giersz,et al.  MOCCA-Survey Database I: Galactic globular clusters harbouring a black hole subsystem , 2018, 1802.05284.

[38]  J. Guillochon,et al.  PS1-10jh: THE DISRUPTION OF A MAIN-SEQUENCE STAR OF NEAR-SOLAR COMPOSITION , 2013, 1304.6397.

[39]  N. Langer,et al.  A new route towards merging massive black holes , 2016, 1601.03718.

[40]  I. Mandel Spin distribution following minor mergers and the effect of spin on the detection range for low-mass-ratio inspirals , 2007, 0707.0711.

[41]  S. Komossa,et al.  A MILLIPARSEC SUPERMASSIVE BLACK HOLE BINARY CANDIDATE IN THE GALAXY SDSS J120136.02+300305.5 , 2014, 1404.4933.

[42]  Johan Samsing,et al.  Black Hole Mergers From Globular Clusters Observable by LISA I: Eccentric Sources Originating From Relativistic N-body Dynamics , 2018, Monthly Notices of the Royal Astronomical Society.

[43]  Daniel J. Price,et al.  Disc formation from tidal disruptions of stars on eccentric orbits by Schwarzschild black holes , 2015, 1501.04635.

[44]  W. Hillebrandt,et al.  Stellar GADGET: a smoothed particle hydrodynamics code for stellar astrophysics and its application to Type Ia supernovae from white dwarf mergers , 2012, 1205.5806.

[45]  Bence Kocsis,et al.  Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei , 2016, 1602.03831.

[46]  C. Fryer,et al.  The Formation of Rapidly Rotating Black Holes in High-mass X-Ray Binaries , 2017, 1708.00570.

[47]  B. Paczyński Common Envelope Binaries , 1976 .

[48]  Brian D. Metzger,et al.  Radio transients from stellar tidal disruption by massive black holes , 2011, 1102.1429.

[49]  UCSC,et al.  Formation of Tidal Captures and Gravitational Wave Inspirals in Binary-single Interactions , 2016, 1609.09114.

[50]  Ronald A. Remillard,et al.  X-Ray Properties of Black-Hole Binaries , 2006, astro-ph/0606352.

[51]  C. Pankow,et al.  Constraining Formation Models of Binary Black Holes with Gravitational-wave Observations , 2017, 1704.07379.

[52]  Enrico Ramirez-Ruiz,et al.  THE FORMATION OF ECCENTRIC COMPACT BINARY INSPIRALS AND THE ROLE OF GRAVITATIONAL WAVE EMISSION IN BINARY–SINGLE STELLAR ENCOUNTERS , 2013, 1308.2964.

[53]  J. Hills Effect of Intruder Mass on Collisions with Hard Binaries. I. Zero-Impact Parameter , 1988 .

[54]  P. Armitage,et al.  Tidal disruption events from supermassive black hole binaries , 2016, 1608.05711.

[55]  M. Giersz,et al.  MOCCA-Survey Database – I. Unravelling black hole subsystems in globular clusters , 2018, Monthly Notices of the Royal Astronomical Society.

[56]  S. Rosswog,et al.  THE STAR INGESTING LUMINOSITY OF INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS , 2008, 0808.3847.

[57]  S. Woosley THE PROGENITOR OF GW150914 , 2016, 1603.00511.

[58]  M. J. Benacquista,et al.  Compact binaries in star clusters – I. Black hole binaries inside globular clusters , 2009, 0910.0546.

[59]  Johan Samsing,et al.  Topology of black hole binary–single interactions , 2017, 1706.04672.

[60]  J. Bardeen,et al.  Kerr Metric Black Holes , 1970, Nature.

[61]  J. Cannizzo,et al.  The Disk Accretion of a Tidally Disrupted Star onto a Massive Black Hole , 1990 .

[62]  A. King,et al.  Warp propagation in astrophysical discs , 2015, 1505.07827.

[63]  T. Piran,et al.  GENERAL RELATIVISTIC HYDRODYNAMIC SIMULATION OF ACCRETION FLOW FROM A STELLAR TIDAL DISRUPTION , 2015, 1501.04365.

[64]  M. Bejger,et al.  On the possible gamma-ray burst–gravitational wave association in GW150914 , 2016, 1604.07132.

[65]  D. Holz,et al.  Using Spin to Understand the Formation of LIGO and Virgo’s Black Holes , 2017, 1709.07896.

[66]  William H. Press,et al.  Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation , 1972 .

[67]  I. Mandel,et al.  Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries , 2015, 1601.00007.

[68]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[69]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[70]  S. Chatterjee,et al.  How Initial Size Governs Core Collapse in Globular Clusters , 2018, The Astrophysical Journal.

[71]  S. Gezari,et al.  LUMINOUS THERMAL FLARES FROM QUIESCENT SUPERMASSIVE BLACK HOLES , 2009, 0904.1596.

[72]  E. Quataert,et al.  Spectroscopic Signatures of the Tidal Disruption of Stars by Massive Black Holes , 2010, 1008.4131.

[73]  M. Giersz,et al.  MOCCA-SURVEY Database I: Assessing GW kick retention fractions for BH–BH mergers in globular clusters , 2018, Monthly Notices of the Royal Astronomical Society.

[74]  Enrico Ramirez-Ruiz,et al.  ILLUMINATING MASSIVE BLACK HOLES WITH WHITE DWARFS: ORBITAL DYNAMICS AND HIGH-ENERGY TRANSIENTS FROM TIDAL INTERACTIONS , 2014, 1405.1426.

[75]  Frederic A. Rasio,et al.  MERGING BLACK HOLE BINARIES IN GALACTIC NUCLEI: IMPLICATIONS FOR ADVANCED-LIGO DETECTIONS , 2016, 1606.04889.

[76]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[77]  Common Envelope Evolution , 2006, astro-ph/0611043.

[78]  Hyung-Mok Lee,et al.  Black hole binaries in galactic nuclei and gravitational wave sources , 2015, 1501.02717.

[79]  Enrico Ramirez-Ruiz,et al.  On the Assembly Rate of Highly Eccentric Binary Black Hole Mergers , 2017, 1703.09703.

[80]  B. Metzger,et al.  Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’ , 2016, 1602.04226.

[81]  M. Fishbach,et al.  Are LIGO's Black Holes Made from Smaller Black Holes? , 2017, 1703.06869.

[82]  P. Eggleton Approximations to the radii of Roche lobes , 1983 .

[83]  S. D. Mink,et al.  Rotational mixing in massive binaries - Detached short-period systems , 2009, 0902.1751.

[84]  Formation of double compact objects , 2006, astro-ph/0612144.

[85]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[86]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[87]  K. Postnov,et al.  The Evolution of Compact Binary Star Systems , 2006, Living reviews in relativity.

[88]  V. Kalogera Spin-Orbit Misalignment in Close Binaries with Two Compact Objects , 1999, astro-ph/9911417.

[89]  James Guillochon,et al.  A DARK YEAR FOR TIDAL DISRUPTION EVENTS , 2015, 1501.05306.

[90]  E. S. Phinney,et al.  MANIFESTATIONS OF A MASSIVE BLACK HOLE IN THE GALACTIC CENTER , 1989 .