Global Smooth Solutions to the n-Dimensional Damped Models of Incompressible Fluid Mechanics with Small Initial Datum

In this paper, we consider the $$n$$n-dimensional ($$n\ge 2$$n≥2) damped models of incompressible fluid mechanics in Besov spaces and establish the global (in time) regularity of classical solutions provided that the initial data are suitable small.

[1]  A. Majda,et al.  Vorticity and incompressible flow , 2001 .

[2]  Marco Cannone,et al.  A Losing Estimate for the Ideal MHD Equations with Application to Blow-up Criterion , 2007, SIAM J. Math. Anal..

[3]  Dongho Chae,et al.  Local existence and blow‐up criterion for the Euler equations in the Besov spaces , 2004 .

[4]  Dongho Chae,et al.  Global regularity for the 2D Boussinesq equations with partial viscosity terms , 2006 .

[5]  Qionglei Chen,et al.  A New Bernstein’s Inequality and the 2D Dissipative Quasi-Geostrophic Equation , 2006 .

[6]  Jiahong Wu,et al.  Global Regularity for a Class of Generalized Magnetohydrodynamic Equations , 2011 .

[7]  R. Temam Navier-Stokes Equations , 1977 .

[8]  Tosio Kato,et al.  Remarks on the breakdown of smooth solutions for the 3-D Euler equations , 1984 .

[9]  Dong Li,et al.  Blow Up for the Generalized Surface Quasi-Geostrophic Equation with Supercritical Dissipation , 2009 .

[10]  C. Cao,et al.  Global Regularity for the Two-Dimensional Anisotropic Boussinesq Equations with Vertical Dissipation , 2013, Archive for Rational Mechanics and Analysis.

[11]  R. Danchin,et al.  Global Well-Posedness Issues for the Inviscid Boussinesq System with Yudovich’s Type Data , 2008, 0806.4081.

[12]  Taoufik Hmidi,et al.  On the global well-posedness for Boussinesq system , 2007 .

[13]  C. Cao,et al.  Small global solutions to the damped two-dimensional Boussinesq equations , 2013, 1308.1723.

[14]  C. Fefferman,et al.  Geometric constraints on potentially singular solutions for the 3-D Euler equations , 1996 .

[15]  P. Constantin,et al.  Inviscid Models Generalizing the Two-dimensional Euler and the Surface Quasi-geostrophic Equations , 2010, 1010.1506.

[16]  P. Constantin,et al.  Absence of Anomalous Dissipation of Energy in Forced Two Dimensional Fluid Equations , 2013, 1305.7089.

[17]  Yong Zhou,et al.  Regularity criteria for the generalized viscous MHD equations , 2007 .

[18]  K. Yamazaki On the global regularity of two-dimensional generalized magnetohydrodynamics system , 2013, 1306.2842.

[19]  Peter Constantin,et al.  Geometric Statistics in Turbulence , 1994, SIAM Rev..

[20]  J. Pedlosky Geophysical Fluid Dynamics , 1979 .

[21]  H. Kozono,et al.  Limiting Case of the Sobolev Inequality in BMO,¶with Application to the Euler Equations , 2000 .

[22]  D. Chae,et al.  The 2D Boussinesq equations with logarithmically supercritical velocities , 2011, 1111.2082.

[23]  R. Danchin,et al.  Fourier Analysis and Nonlinear Partial Differential Equations , 2011 .

[24]  Peter Constantin,et al.  Behavior of solutions of 2D quasi-geostrophic equations , 1999 .

[25]  C. Miao,et al.  On the regularity of a class of generalized quasi-geostrophic equations , 2010, 1011.6214.

[26]  Peter Constantin,et al.  Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation , 2008 .

[27]  Chongsheng Cao,et al.  The 2D MHD equations with horizontal dissipation and horizontal magnetic diffusion , 2013 .

[28]  Marius Paicu,et al.  GLOBAL EXISTENCE RESULTS FOR THE ANISOTROPIC BOUSSINESQ SYSTEM IN DIMENSION TWO , 2008, 0809.4984.

[29]  Taoufik Hmidi,et al.  Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces , 2006, math/0611494.

[30]  Roger Temam,et al.  Some mathematical questions related to the MHD equations , 1983 .

[31]  H. Triebel Theory of Function Spaces III , 2008 .

[32]  Thomas C. Sideris,et al.  Long Time Behavior of Solutions to the 3D Compressible Euler Equations with Damping , 2003 .

[33]  Xiaojing Xu,et al.  Global regularity of solutions of 2D Boussinesq equations with fractional diffusion , 2010 .

[34]  Z. Ye,et al.  Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics system , 2014 .

[35]  E Weinan,et al.  Small‐scale structures in Boussinesq convection , 1998 .

[36]  Jiahong Wu,et al.  Global Solutions of the 2D Dissipative Quasi-Geostrophic Equation in Besov Spaces , 2005, SIAM J. Math. Anal..

[37]  Hongjie Dong,et al.  Spatial Analyticity of the Solutions to the Subcritical Dissipative Quasi-geostrophic Equations , 2008 .

[38]  R. Danchin Remarks on the lifespan of the solutions to some models of incompressible fluid mechanics , 2012, 1201.6326.

[39]  E. Titi,et al.  Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics , 2005, math/0503028.

[40]  Xinwei Yu,et al.  On global regularity of 2D generalized magnetohydrodynamic equations , 2013, 1302.6633.

[41]  D. Chae On the continuation principles for the Euler equations and the quasi-geostrophic equation , 2006 .

[42]  Young Ja Park,et al.  Existence of Solution for the Euler Equations in a Critical Besov Space (ℝ n ) , 2004 .

[43]  Existence for the α-patch model and the QG sharp front in Sobolev spaces , 2007, math/0701447.

[44]  Jean-Yves Chemin,et al.  Perfect Incompressible Fluids , 1998 .

[45]  E. Titi,et al.  Global Well-posedness for The 2D Boussinesq System Without Heat Diffusion and With Either Anisotropic Viscosity or Inviscid Voigt-$α$ Regularization , 2010 .

[46]  P. Constantin,et al.  Generalized surface quasi‐geostrophic equations with singular velocities , 2011, 1101.3537.

[47]  Zhifei Zhang,et al.  On the Well-posedness of the Ideal MHD Equations in the Triebel–Lizorkin Spaces , 2007, 0708.0099.

[48]  Taoufik Hmidi,et al.  On the global well-posedness of the Euler-Boussinesq system with fractional dissipation , 2009, 0903.3747.

[49]  Xiaojing Xu,et al.  The lifespan of solutions to the inviscid 3D Boussinesq system , 2013, Appl. Math. Lett..

[50]  Peter Constantin,et al.  On the Euler equations of incompressible fluids , 2007 .

[51]  Hideyuki Miura,et al.  Dissipative Quasi-Geostrophic Equation for Large Initial Data in the Critical Sobolev Space , 2006 .

[52]  Akira Ogawa,et al.  Vorticity and Incompressible Flow. Cambridge Texts in Applied Mathematics , 2002 .

[53]  L. E. Fraenkel,et al.  NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .

[54]  Qionglei Chen,et al.  On the Regularity Criterion of Weak Solution for the 3D Viscous Magneto-Hydrodynamics Equations , 2007, 0711.0123.

[55]  Dongho Chae,et al.  Global Well-Posedness in the Super-Critical Dissipative Quasi-Geostrophic Equations , 2003 .

[56]  K. Yamazaki Remarks on the global regularity of two-dimensional magnetohydrodynamics system with zero dissipation , 2013, 1306.2763.

[57]  Jiahong Wu,et al.  The 2D Incompressible Magnetohydrodynamics Equations with only Magnetic Diffusion , 2013, SIAM J. Math. Anal..

[58]  P. Constantin,et al.  On the critical dissipative quasi-geostrophic equation , 2001 .

[59]  Vlad Vicol,et al.  Nonlinear maximum principles for dissipative linear nonlocal operators and applications , 2011, 1110.0179.

[60]  A. Volberg,et al.  Global well-posedness for the critical 2D dissipative quasi-geostrophic equation , 2007 .

[61]  Jiahong Wu,et al.  The two-dimensional quasi-geostrophic equation with critical or supercritical dissipation , 2005 .

[62]  Jiahong Wu,et al.  Generalized MHD equations , 2003 .

[63]  Dongho Chae,et al.  Local existence and blow-up criterion for the Boussinesq equations , 1997, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[64]  Tosio Kato Nonstationary flows of viscous and ideal fluids in R3 , 1972 .

[65]  Jiahong Wu,et al.  THE QUASI-GEOSTROPHIC EQUATION AND ITS TWO REGULARIZATIONS , 2002 .

[66]  Chongsheng Cao,et al.  Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion , 2009, 0901.2908.

[67]  Peter Constantin,et al.  Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations , 2007, math/0701594.

[68]  Russel E. Caflisch,et al.  Remarks on Singularities, Dimension and Energy Dissipation for Ideal Hydrodynamics and MHD , 1997 .

[69]  F. Rousset,et al.  Global Well-Posedness for Euler–Boussinesq System with Critical Dissipation , 2010 .

[70]  Changxing Miao,et al.  On the global well-posedness of a class of Boussinesq–Navier–Stokes systems , 2009, 0910.0311.

[71]  Yong Zhou,et al.  Global cauchy problem of 2D generalized MHD equations , 2014 .

[72]  On the Blow-up Criterion of Smooth Solutions to the 3D Ideal MHD Equations , 2004 .

[73]  L. Caffarelli,et al.  Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation , 2006, math/0608447.

[74]  Jiahong Wu,et al.  Regularity Criteria for the Generalized MHD Equations , 2008 .

[75]  Z. Ye Blow-up criterion of smooth solutions for the Boussinesq equations , 2014 .

[76]  Alexander Kiselev,et al.  Nonlocal maximum principles for active scalars , 2010, 1009.0542.

[77]  Antonio Córdoba,et al.  Communications in Mathematical Physics A Maximum Principle Applied to Quasi-Geostrophic Equations , 2004 .

[78]  Thomas Y. Hou,et al.  GLOBAL WELL-POSEDNESS OF THE VISCOUS BOUSSINESQ EQUATIONS , 2004 .