Spectroscopic Properties and Continuous Wave Laser Performances at 1064 nm of Nd3+: LuAG Transparent Ceramic

A transparent 2 at% Nd<sup>3+</sup>-doped Lu<sub>3</sub>Al<sub>5</sub>O<sub>12</sub> (LuAG) ceramic was fabricated by using tape-casting method and solid-state sintering technology. Based on the room temperature absorption spectrum, the three J–O intensity parameters were calculated with Judd–Ofelt analysis, and then, the radiative transition rates and branching ratios of transitions from <sup>4</sup><bold>F</bold><sub>3/2</sub> manifold to the <inline-formula><tex-math notation="LaTeX">${}^4{{\rm {\mathbf I}}_{ \mathbf{{J}^{\prime}}}}$ </tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX">$\mathbf{{ J}^{\prime}} = \ 13/2,\;11/2,\;9/2$ </tex-math></inline-formula>) lower lying multiple manifolds were determined. The quantum efficiency of 80.4% was evaluated from the measured fluorescence lifetime and the radiative lifetime of the <inline-formula> <tex-math notation="LaTeX">${}^4{{\mathbf F}_{3/2\ }}$</tex-math></inline-formula> manifold state. Also, the inter-Stark energy levels of the <inline-formula><tex-math notation="LaTeX">$4{{{\mathbf I}}_{\boldsymbol{J^{\prime}}}}$</tex-math></inline-formula> manifolds were performed, and the peak emission cross sections of the <inline-formula><tex-math notation="LaTeX">${}^4{\mathbf{F}_{3/2\ }} \to {}^4{{{\mathbf {I}}}_{\mathbf{{ J}^{\prime}}}}$</tex-math></inline-formula> intermanifold transitions were determined. The total emission cross section for <inline-formula><tex-math notation="LaTeX">${}^4{\mathbf{F}_{3/2\ }} \to $</tex-math> </inline-formula> <inline-formula><tex-math notation="LaTeX">${}^4{\mathbf{I}_{9/2\ }}$</tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">${}^4{\mathbf{I}_{11/2\ }}$</tex-math></inline-formula>, and <inline-formula> <tex-math notation="LaTeX">${}^4{\mathbf{I}_{13/2\ }}$</tex-math></inline-formula> transitions was calculated to be <inline-formula><tex-math notation="LaTeX">$7.41 \times {10^{ - 20}}\ {{\rm c}}{{{\rm m}}^2}$</tex-math> </inline-formula>, <inline-formula><tex-math notation="LaTeX">$29.83 \times {10^{ - 20}}\ {{\rm c}}{{{\rm m}}^2}$ </tex-math></inline-formula>, and <inline-formula><tex-math notation="LaTeX">$10.53 \times {10^{ - 20}}\ {{\rm c}}{{{\rm m}}^2}$</tex-math></inline-formula>, respectively. Finally, under an 808 nm diode laser pumping, the continuous wave laser performances of the Nd:LuAG transparent ceramic were investigated.

[1]  Madhab Pokhrel,et al.  Comparative studies of the spectroscopic properties of Nd 3+ : YAG nanocrystals, transparent ceramic and single crystal , 2012 .

[2]  Jian Zhang,et al.  Diode-pumped Nd:LuAG ceramic laser on 4 F 3/2 - 4 I 13/2 transition , 2017 .

[3]  Yongge Cao,et al.  Longitudinally diode-pumped planar waveguide YAG/Yb:LuAG/YAG ceramic laser at 1030.7  nm. , 2016, Optics letters.

[4]  Jintai Fan,et al.  Effects of annealing on Cr-sensitized Nd:LuAG laser ceramics , 2015 .

[5]  Ernest OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 2012 .

[6]  A. Kaminskiĭ,et al.  Crystalline Lasers: Physical Processes and Operating Schemes , 1996 .

[7]  Huai-jin Zhang,et al.  Fabrication, microstructure and laser performance of Nd3+-doped Lu3Al5O12 transparent ceramics , 2016 .

[8]  Günter Huber,et al.  Thermal and laser properties of Yb:LuAG for kW thin disk lasers. , 2010, Optics express.

[9]  Xiaojin Cheng,et al.  Spectral properties and laser performance of Nd:Lu 3 Al 5 O 12 ceramic , 2015 .

[10]  T. E. Varitimos,et al.  Optical Spectra and Intensities of Nd3+ in YAlO3 , 1971 .

[11]  Yoichi Sato,et al.  Optical properties and laser characteristics of highly Nd3+-doped Y3Al5O12 ceramics , 2000 .

[12]  B. Yao,et al.  Polycrystalline Ho: LuAG laser ceramics: Fabrication, microstructure, and optical characterization , 2017 .

[13]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .

[14]  T. H. Allik,et al.  Stark components of lower-lying manifolds and emission cross-sections of intermanifold and inter-stark transitions of Nd3+(4f3) in polycrystalline ceramic garnet Y3Al5O12 , 2006 .

[15]  W. Krupke Radiative transition probabilities within the 4 f 3 ground configuration of Nd:YAG , 1971 .

[16]  R. Powell Physics of Solid-State Laser Materials , 1998 .

[17]  Kelly L. Nash,et al.  Optical absorption intensity analysis and emission cross sections for the intermanifold and the inter-Stark transitions of Nd3+(4f3) in polycrystalline ceramic Y2O3 , 2006 .

[18]  D. Hahn,et al.  Assessment of soot particle vaporization effects during laser-induced incandescence with time-resolved light scattering. , 2005, Applied optics.

[19]  Jintai Fan,et al.  Micro-structure of grain boundary in post-annealed Sinter plus HIPed Nd:Lu3Al5O12 ceramics , 2014 .

[20]  Yongge Cao,et al.  Spectral and Laser Properties of Yb:LuAG Transparent Ceramics Fabricated by Tape Casting Method , 2016 .

[21]  Akio Ikesue,et al.  Fabrication and Optical Properties of High‐Performance Polycrystalline Nd:YAG Ceramics for Solid‐State Lasers , 1995 .

[22]  Zhiwei Zhao,et al.  Crystal growth, spectral and laser properties of Nd:LuAG single crystal , 2009 .

[23]  Jiangxu Li,et al.  Fabrication and thermal effects of highly transparent polycrystalline Nd:YAG ceramics , 2015 .

[24]  Yongge Cao,et al.  Cation diffusion at the interface of composite YAG/Re: LuAG (Re = Nd or Yb) transparent ceramics , 2016 .

[25]  Lunhui Guan,et al.  Diode-pumped tape casting planar waveguide YAG/Nd:YAG/YAG ceramic laser. , 2015, Optics express.

[26]  N. Ishizawa,et al.  Crystal growth and properties of (Lu,Y)3Al5O12 , 2004 .

[27]  Yongge Cao,et al.  Fabrication and laser behaviors of Nd:YAG ceramic microchips , 2011 .

[28]  M. J. Weber,et al.  Radiative and Multiphonon Relaxation of Rare-Earth Ions in Y 2 O 3 , 1968 .

[29]  John A. Caird,et al.  Spectroscopic, optical, and thermomechanical properties of neodymium- and chromium-doped gadolinium scandium gallium garnet , 1986 .

[30]  H. Yagi,et al.  Spectroscopic and stimulated emission Characteristics of Nd/sup 3+/ in transparent YAG ceramics , 2004, IEEE Journal of Quantum Electronics.

[31]  P. Gupta,et al.  Spectroscopic analysis on the basis Judd–Ofelt theory of Nd3+ in (Y0.985Nd0.015)2O3: A transparent laser-host ceramic , 2014 .

[32]  Akio Ikesue,et al.  Fabrication and Optical Properties of High‐Performance Polycrystalline Nd:YAG Ceramics for Solid‐State Lasers. , 1995 .

[33]  N. Wagner,et al.  Towards the preparation of transparent LuAG:Nd3+ ceramics , 2012 .

[34]  D. Luo,et al.  Continuous-wave laser operation of Nd:LuAG ceramic with ^4F_3∕2→^4I_11∕2 transition , 2015 .