Constructing internally disjoint pendant Steiner trees in Cartesian product networks

The concept of pedant tree-connectivity was introduced by Hager in 1985. For a graph $G=(V,E)$ and a set $S\subseteq V(G)$ of at least two vertices, \emph{an $S$-Steiner tree} or \emph{a Steiner tree connecting $S$} (or simply, \emph{an $S$-tree}) is a such subgraph $T=(V',E')$ of $G$ that is a tree with $S\subseteq V'$. For an $S$-Steiner tree, if the degree of each vertex in $S$ is equal to one, then this tree is called a \emph{pedant $S$-Steiner tree}. Two pedant $S$-Steiner trees $T$ and $T'$ are said to be \emph{internally disjoint} if $E(T)\cap E(T')=\varnothing$ and $V(T)\cap V(T')=S$. For $S\subseteq V(G)$ and $|S|\geq 2$, the \emph{local pedant tree-connectivity} $\tau_G(S)$ is the maximum number of internally disjoint pedant $S$-Steiner trees in $G$. For an integer $k$ with $2\leq k\leq n$, \emph{pedant tree $k$-connectivity} is defined as $\tau_k(G)=\min\{\tau_G(S)\,|\,S\subseteq V(G),|S|=k\}$. In this paper, we prove that for any two connected graphs $G$ and $H$, $\tau_3(G\Box H)\geq \min\{3\lfloor\frac{\tau_3(G)}{2}\rfloor,3\lfloor\frac{\tau_3(H)}{2}\rfloor\}$. Moreover, the bound is sharp.

[1]  Ding-Zhu Du,et al.  Steiner tree problems in computer communication networks , 2008 .

[2]  Robert D. Kleinberg,et al.  Lexicographic Products and the Power of Non-linear Network Coding , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[3]  Sabine R. Öhring,et al.  Embeddings Into Hyper Petersen Networks: Yet Another Hypercube-Like Interconnection Topology , 1995 .

[4]  G. Dirac In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen† , 1960 .

[5]  Alon Itai,et al.  The Multi-Tree Approach to Reliability in Distributed Networks , 1988, Inf. Comput..

[6]  Xueliang Li,et al.  On the generalized (edge-)connectivity of graphs , 2011, Australas. J Comb..

[7]  Frank Harary,et al.  The connectivity function of a graph , 1967 .

[8]  Xueliang Li,et al.  The minimal size of a graph with given generalized 3-edge-connectivity , 2015, Ars Comb..

[9]  Ortrud R. Oellermann On thel-connectivity of a graph , 1987, Graphs Comb..

[10]  C. Nash-Williams Edge-disjoint spanning trees of finite graphs , 1961 .

[11]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[12]  Peter Alan Lee,et al.  Fault Tolerance , 1990, Dependable Computing and Fault-Tolerant Systems.

[13]  L. Beineke,et al.  Topics in Structural Graph Theory , 2013 .

[14]  Gert Sabidussi,et al.  Graphs with Given Group and Given Graph-Theoretical Properties , 1957, Canadian Journal of Mathematics.

[15]  Ping Zhang,et al.  The tree connectivity of regular complete bipartite graphs , 2010 .

[16]  Kenta Ozeki,et al.  Spanning Trees: A Survey , 2011, Graphs Comb..

[17]  Simon Spacapan,et al.  Connectivity of Cartesian products of graphs , 2008, Appl. Math. Lett..

[18]  Michael Hager,et al.  Pendant tree-connectivity , 1985, J. Comb. Theory, Ser. B.

[19]  Yoshihide Igarashi,et al.  Reliable broadcasting in product networks , 1998, Discret. Appl. Math..

[20]  W. Mader Über die Maximalzahl kantendisjunkterA- Wege , 1978 .

[21]  Biing-Feng Wang,et al.  Constructing Edge-Disjoint Spanning Trees in Product Networks , 2003, IEEE Trans. Parallel Distributed Syst..

[22]  Abdel Elah Al-Ayyoub,et al.  The Cross Product of Interconnection Networks , 1997, IEEE Trans. Parallel Distributed Syst..

[23]  Edgar M. Palmer,et al.  On the spanning tree packing number of a graph: a survey , 2001, Discret. Math..

[24]  Min Feng,et al.  Identifying Codes of Lexicographic Product of Graphs , 2012, Electron. J. Comb..

[25]  W. Imrich,et al.  Handbook of Product Graphs, Second Edition , 2011 .

[26]  W. Mader Über die Maximalzahl kreuzungsfreierH-Wege , 1978 .

[27]  Michael Hager,et al.  Path-connectivity in graphs , 1986, Discret. Math..

[28]  G. Chartrand,et al.  Rainbow trees in graphs and generalized connectivity , 2010 .

[29]  Parameswaran Ramanathan,et al.  Hardware-Assisted Software Clock Synchronization for Homogeneous Distributed Systems , 1990, IEEE Trans. Computers.

[30]  Xueliang Li,et al.  Generalized Connectivity of Graphs , 2016 .

[31]  Xueliang Li,et al.  The generalized 3-connectivity of Cartesian product , 2012, Discret. Math. Theor. Comput. Sci..

[32]  S. Lennart Johnsson,et al.  Optimum Broadcasting and Personalized Communication in Hypercubes , 1989, IEEE Trans. Computers.

[33]  Herbert S. Wilf,et al.  The Number of Independent Sets in a Grid Graph , 1998, SIAM J. Discret. Math..

[34]  Xueliang Li,et al.  On Extremal Graphs with at Most $$\ell $$ℓ Internally Disjoint Steiner Trees Connecting Any $$n-1$$n-1 Vertices , 2013, Graphs Comb..

[35]  Selim G. Akl,et al.  Optimal Communication Primitives on the Generalized Hypercube Network , 1996, J. Parallel Distributed Comput..

[36]  Xueliang Li,et al.  Nordhaus-Gaddum-type results for the generalized edge-connectivity of graphs , 2012, Discret. Appl. Math..

[37]  Jun-Ming Xu,et al.  Connectivity of lexicographic product and direct product of graphs , 2013, Ars Comb..

[38]  Pankaj Jalote,et al.  Fault tolerance in distributed systems , 1994 .

[39]  M. Grötschel,et al.  The Steiner tree packing problem , 2008 .

[40]  Selim G. Akl,et al.  Edge-Disjoint Spanning Trees on the Star Network with Applications to Fault Tolerance , 1996, IEEE Trans. Computers.

[41]  Naveed A. Sherwani,et al.  Algorithms for VLSI Physical Design Automation , 1999, Springer US.

[42]  Xueliang Li,et al.  On Extremal Graphs with at Most Two Internally Disjoint Steiner Trees Connecting Any Three Vertices , 2012, 1210.8021.

[43]  Xueliang Li,et al.  Note on the hardness of generalized connectivity , 2012, J. Comb. Optim..

[44]  Martin Grötschel,et al.  Packing Steiner trees: a cutting plane algorithm and computational results , 1996, Math. Program..

[45]  D. Du,et al.  Steiner Trees in Industry , 2002 .

[46]  Richard Stong Hamilton decompositions of cartesian products of graphs , 1991, Discret. Math..

[47]  Xueliang Li,et al.  Sharp bounds for the generalized connectivity kappa3(G) , 2009, Discret. Math..

[48]  Arthur L. Liestman,et al.  A survey of gossiping and broadcasting in communication networks , 1988, Networks.