On the Variable Ordering in Subgraph Isomorphism Algorithms

Graphs are mathematical structures to model several biological data. Applications to analyze them require to apply solutions for the subgraph isomorphism problem, which is NP-complete. Here, we investigate the existing strategies to reduce the subgraph isomorphism algorithm running time with emphasis on the importance of the order with which the graph vertices are taken into account during the search, called variable ordering, and its incidence on the total running time of the algorithms. We focus on two recent solutions, which are based on an effective variable ordering strategy. We discuss their comparison both with the variable ordering strategies reviewed in the paper and the other algorithms present in the ICPR2014 contest on graph matching algorithms for pattern search in biological databases.

[1]  Paolo Codenotti,et al.  Distinguishing vertices of inhomogeneous random graphs , 2013 .

[2]  Christian Bessiere,et al.  MAC and Combined Heuristics: Two Reasons to Forsake FC (and CBJ?) on Hard Problems , 1996, CP.

[3]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[4]  Mario Vento,et al.  A Database of Graphs for Isomorphism and Sub-Graph Isomorphism Benchmarking , 2001 .

[5]  GusfieldDan Introduction to the IEEE/ACM Transactions on Computational Biology and Bioinformatics , 2004 .

[6]  Davide Heller,et al.  STRING v10: protein–protein interaction networks, integrated over the tree of life , 2014, Nucleic Acids Res..

[7]  Andrey Rzhetsky,et al.  Emergent behavior of growing knowledge about molecular interactions , 2005, Nature Biotechnology.

[8]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[9]  Ruth Nussinov,et al.  Structure and dynamics of molecular networks: A novel paradigm of drug discovery. A comprehensive review , 2012, Pharmacology & therapeutics.

[10]  Natasa Przulj,et al.  Biological function through network topology: a survey of the human diseasome , 2012, Briefings in functional genomics.

[11]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[12]  David Eppstein,et al.  The Polyhedral Approach to the Maximum Planar Subgraph Problem: New Chances for Related Problems , 1994, GD.

[13]  angesichts der Corona-Pandemie,et al.  UPDATE , 1973, The Lancet.

[14]  Donghyeon Yu,et al.  Review of Biological Network Data and Its Applications , 2013, Genomics & informatics.

[15]  Natasa Przulj,et al.  Biological network comparison using graphlet degree distribution , 2007, Bioinform..

[16]  Horst Bunke,et al.  Efficient subgraph matching using topological node feature constraints , 2015, Pattern Recognit..

[17]  Robert M. Haralick,et al.  Increasing Tree Search Efficiency for Constraint Satisfaction Problems , 1979, Artif. Intell..

[18]  S. Mangan,et al.  Structure and function of the feed-forward loop network motif , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Mario Vento,et al.  Performance Comparison of Five Exact Graph Matching Algorithms on Biological Databases , 2013, ICIAP Workshops.

[20]  Solomon W. Golomb,et al.  Backtrack Programming , 1965, JACM.

[21]  Gary D. Bader,et al.  Pathguide: a Pathway Resource List , 2005, Nucleic Acids Res..

[22]  C. Morcia,et al.  From Single Genes to Co-Expression Networks: Extracting Knowledge from Barley Functional Genomics , 2005, Plant Molecular Biology.

[23]  Mario Vento,et al.  An Improved Algorithm for Matching Large Graphs , 2001 .

[24]  Ning Jiang,et al.  Network portal: a database for storage, analysis and visualization of biological networks , 2013, Nucleic Acids Res..

[25]  Mario Vento,et al.  A large database of graphs and its use for benchmarking graph isomorphism algorithms , 2003, Pattern Recognit. Lett..

[26]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[27]  Cnrs Fre,et al.  Enforcing Arc Consistency using Bitwise Operations , 2007 .

[28]  Yves Deville,et al.  Solving subgraph isomorphism problems with constraint programming , 2009, Constraints.

[29]  Giovanni Scardoni,et al.  Analyzing biological network parameters with CentiScaPe , 2009, Bioinform..

[30]  Fred B. Schneider,et al.  A Theory of Graphs , 1993 .

[31]  Tijana Milenkoviæ,et al.  Uncovering Biological Network Function via Graphlet Degree Signatures , 2008, Cancer informatics.

[32]  J. J. McGregor Relational consistency algorithms and their application in finding subgraph and graph isomorphisms , 1979, Inf. Sci..

[33]  Eugene C. Freuder,et al.  Understanding and Improving the MAC Algorithm , 1997, CP.

[34]  David Z. Chen,et al.  Architecture of the human regulatory network derived from ENCODE data , 2012, Nature.

[35]  N. Biggs Algebraic Graph Theory , 1974 .

[36]  S. L. Wong,et al.  A Map of the Interactome Network of the Metazoan C. elegans , 2004, Science.

[37]  Mario Vento,et al.  Report on the First Contest on Graph Matching Algorithms for Pattern Search in Biological Databases , 2015, GbRPR.

[38]  Mario Vento,et al.  Graph Matching and Learning in Pattern Recognition in the Last 10 Years , 2014, Int. J. Pattern Recognit. Artif. Intell..

[39]  R. Tagliaferri,et al.  Discovery of drug mode of action and drug repositioning from transcriptional responses , 2010, Proceedings of the National Academy of Sciences.

[40]  A. Barabasi,et al.  Drug—target network , 2007, Nature Biotechnology.

[41]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[42]  Justin Lamb,et al.  The Connectivity Map: a new tool for biomedical research , 2007, Nature Reviews Cancer.

[43]  Brendan D. McKay,et al.  Practical graph isomorphism, II , 2013, J. Symb. Comput..

[44]  Kenneth Wysocki,et al.  Diseasome , 2011, Annual Review of Nursing Research.

[45]  Alessandro Giuliani,et al.  Why network approach can promote a new way of thinking in biology , 2014, Front. Genet..

[46]  Matthew N McCall,et al.  Estimation of Gene Regulatory Networks. , 2013, Postdoc journal : a journal of postdoctoral research and postdoctoral affairs.

[47]  Lakhdar Sais,et al.  Boosting Systematic Search by Weighting Constraints , 2004, ECAI.

[48]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[49]  Julian R. Ullmann,et al.  Bit-vector algorithms for binary constraint satisfaction and subgraph isomorphism , 2010, JEAL.

[50]  Alfredo Pulvirenti,et al.  Comprehensive Reconstruction and Visualization of Non-Coding Regulatory Networks in Human , 2014, Front. Bioeng. Biotechnol..

[51]  Dennis Shasha,et al.  A subgraph isomorphism algorithm and its application to biochemical data , 2013, BMC Bioinformatics.

[52]  Mario Vento,et al.  A (sub)graph isomorphism algorithm for matching large graphs , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  R. Albert,et al.  Systems-level insights into cellular regulation: inferring, analysing, and modelling intracellular networks. , 2007, IET systems biology.

[54]  Christie S. Chang,et al.  The BioGRID interaction database: 2013 update , 2012, Nucleic Acids Res..

[55]  Gary D. Bader,et al.  Pathway Commons, a web resource for biological pathway data , 2010, Nucleic Acids Res..

[56]  Uros Cibej,et al.  Search Strategies for Subgraph Isomorphism Algorithms , 2014, ICAA.

[57]  Julian R. Ullmann,et al.  An Algorithm for Subgraph Isomorphism , 1976, J. ACM.

[58]  Nils J. Nilsson,et al.  Principles of Artificial Intelligence , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Christine Solnon,et al.  AllDifferent-based filtering for subgraph isomorphism , 2010, Artif. Intell..

[60]  Kaspar Riesen,et al.  Suboptimal Graph Isomorphism using bipartite Matching , 2012, Int. J. Pattern Recognit. Artif. Intell..

[61]  Alan K. Mackworth Consistency in Networks of Relations , 1977, Artif. Intell..

[62]  A. Ramezanpour,et al.  Investigation of a protein complex network , 2003, cond-mat/0304207.

[63]  Paul Erdös,et al.  Random Graph Isomorphism , 1980, SIAM J. Comput..

[64]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[65]  K. Goh,et al.  Exploring the human diseasome: the human disease network. , 2012, Briefings in functional genomics.

[66]  Richard Wallace Factor Analytic Studies of CSP Heuristics , 2005, CP.

[67]  Barbara M. Smith The Brélaz Heuristic and Optimal Static Orderings , 1999, CP.

[68]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[69]  John Gaschnig,et al.  A General Backtrack Algorithm That Eliminates Most Redundant Tests , 1977, IJCAI.

[70]  Michael J E Sternberg,et al.  The identification of similarities between biological networks: application to the metabolome and interactome. , 2007, Journal of molecular biology.

[71]  Josef Lauri,et al.  Subgraphs as a Measure of Similarity , 2011, Structural Analysis of Complex Networks.