Improvement of Ti-6Al-4 V alloy in terms of mechanical and tribological properties by oxidation and nitriding

[1]  M. Makówka,et al.  Comparison of Different Thermo-Chemical Treatments Methods of Ti-6Al-4V Alloy in Terms of Tribological and Corrosion Properties , 2020, Materials.

[2]  I. Piwoński,et al.  Friction and wear of a-C:H:SiOx coatings in combination with AISI 316L and ZrO2 counterbodies , 2017 .

[3]  Mohd Halim Irwan Ibrahim,et al.  Study of corrosion in biocompatible metals for implants: A review , 2017 .

[4]  M. Niinomi,et al.  Biomedical titanium alloys with Young’s moduli close to that of cortical bone , 2016, Regenerative biomaterials.

[5]  W. Kao,et al.  Improved tribological, electrochemical and biocompatibility properties of Ti6Al4V alloy by gas-nitriding and Ti-C: H coating , 2015 .

[6]  Simon S. Park,et al.  Directional friction surfaces through asymmetrically shaped dimpled surfaces patterned using inclined flat end milling , 2015 .

[7]  Z. Liao,et al.  Different tribological behaviors of titanium alloys modified by thermal oxidation and spraying diamond like carbon , 2014 .

[8]  M. Fathi,et al.  Heat Treatment Of Cobalt-Base Alloy Surgical Implants With Hydroxyapatite-Bioglass For Surface Bioactivation , 2012 .

[9]  E. Ciulli,et al.  Lubrication and wear modelling of artificial hip joints: A review , 2011 .

[10]  Murat Çağlar Baydoğan,et al.  Micro-arc oxidation of Ti6Al4V and Ti6Al7Nb alloys for biomedical applications , 2011 .

[11]  S. Okur,et al.  CoCrMo alloy treated by floating potential plasma assisted nitriding and plasma based ion implantation: Influence of the hydrogen content and of the ion energy on the nitrogen incorporation , 2010 .

[12]  C. Díaz,et al.  Improved bio-tribology of biomedical alloys by ion implantation techniques , 2009 .

[13]  Y. Shih,et al.  Preparation of bioactive amorphous-like titanium oxide layer on titanium by plasma oxidation treatment , 2008 .

[14]  K. Kurzydłowski,et al.  Surface engineering techniques used for improving the mechanical and tribological properties of the Ti6A14V alloy , 2008 .

[15]  Xiaoying Li,et al.  Improving the wear properties of Stellite 21 alloy by plasma surface alloying with carbon and nitrogen , 2008 .

[16]  F. Borgioli,et al.  Improvement of wear resistance of Ti-6Al-4V alloy by means of thermal oxidation , 2005 .

[17]  H. Cimenoglu,et al.  Surface modification of a Ti–6Al–4V alloy by thermal oxidation , 2005 .

[18]  P. Chu,et al.  Surface modification of titanium, titanium alloys, and related materials for biomedical applications , 2004 .

[19]  R. Wei,et al.  High intensity plasma ion nitriding of orthopedic materials: Part II. Microstructural analysis , 2004 .

[20]  H. Cimenoglu,et al.  Effect of thermal oxidation on corrosion and corrosion-wear behaviour of a Ti-6Al-4V alloy. , 2004, Biomaterials.

[21]  A. Straboni,et al.  Plasma assisted nitridation of Ti-6Al-4V , 2004 .

[22]  A. Haseeb,et al.  Response of Ti–6Al–4V and Ti–24Al–11Nb alloys to dry sliding wear against hardened steel , 2002 .

[23]  X. D. Zhang,et al.  Characterization of surface oxide films on titanium and bioactivity , 2002, Journal of materials science. Materials in medicine.

[24]  D. Starosvetsky,et al.  Corrosion behavior of titanium nitride coated Ni-Ti shape memory surgical alloy. , 2001, Biomaterials.

[25]  Hongbiao Dong,et al.  Enhanced wear resistance of titanium surfaces by a new thermal oxidation treatment , 2000 .

[26]  E. Jezierska,et al.  Effect of carbon ion implantation on the structure and corrosion resistance of OT-4-0 titanium alloy , 1999 .

[27]  T. Bell,et al.  Surface modification of titanium alloys for combined improvements in corrosion and wear resistance , 1998 .

[28]  C. Allen,et al.  Sliding wear behaviour of ion implanted ultra high molecular weight polyethylene against a surface modified titanium alloy Ti-6Al-4V , 1996 .

[29]  A. Al-Garni,et al.  Plasma nitriding of Ti6Al4V alloy to improve some tribological properties , 1996 .

[30]  A. Gicquel,et al.  Plasma and nitrides: application to the nitriding of titanium , 1990 .

[31]  R. Noort Titanium: The implant material of today , 1987 .

[32]  C. Coddet,et al.  The role of nitrogen in the oxidation behaviour of titanium and some binary alloys , 1986 .

[33]  Suiyuan Chen,et al.  High pressure EIGA preparation and 3D printing capability of Ti—6Al—4V powder , 2020 .

[34]  Eugenio Brusa,et al.  Numerical modeling and testing of mechanical behavior of AM Titanium alloy bracket for aerospace applications , 2017 .

[35]  A. Tumarkin,et al.  Plasma Nitriding of Titanium Alloy Ti5Al4V2Mo , 2015 .

[36]  K. Rie,et al.  Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. , 1996, Biomaterials.

[37]  S. Frangini,et al.  Various aspects of the air oxidation behaviour of a Ti6Al4V alloy at temperatures in the range 600–700 °C , 1994, Journal of Materials Science.