On the sufficiency of c-cyclical monotonicity for optimality of transport plans
暂无分享,去创建一个
[1] Luigi Ambrosio,et al. Existence of optimal transport maps for crystalline norms , 2004 .
[2] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[3] M. Knott,et al. On Hoeffding-Fre´chet bounds and cyclic monotone relations , 1992 .
[4] L. Ambrosio,et al. Existence and stability results in the L 1 theory of optimal transportation , 2003 .
[5] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[6] C. Villani,et al. Optimal Transportation and Applications , 2003 .
[7] C. Villani. Topics in Optimal Transportation , 2003 .
[9] S. Rachev,et al. Mass transportation problems , 1998 .
[10] L. Kantorovich. On a Problem of Monge , 2006 .
[11] A. Üstünel,et al. Monge-Kantorovitch Measure Transportation and Monge-Ampère Equation on Wiener Space , 2004 .
[12] P. Bernard,et al. Optimal mass transportation and Mather theory , 2004, math/0412299.
[13] L. Rüschendorf. On c-optimal random variables , 1996 .
[14] L. Ambrosio. Lecture Notes on Optimal Transport Problems , 2003 .
[15] R. Rockafellar. Characterization of the subdifferentials of convex functions , 1966 .
[16] L. Evans. Partial Differential Equations and Monge-Kantorovich Mass Transfer , 1997 .
[17] A. Üstünel,et al. Measure transport on Wiener space and the Girsanov theorem , 2002 .