On the sufficiency of c-cyclical monotonicity for optimality of transport plans

We consider a mass transport problem among Polish spaces, and we show that a transport plan concentrated in a c-cyclical monotone set is optimal if the cost function is continuous and possibly + ∞ valued; the same result is proved for a generic l.s.c. cost function in the case when the measures are purely atomic. This generalizes the previously known results.

[1]  Luigi Ambrosio,et al.  Existence of optimal transport maps for crystalline norms , 2004 .

[2]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[3]  M. Knott,et al.  On Hoeffding-Fre´chet bounds and cyclic monotone relations , 1992 .

[4]  L. Ambrosio,et al.  Existence and stability results in the L 1 theory of optimal transportation , 2003 .

[5]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[6]  C. Villani,et al.  Optimal Transportation and Applications , 2003 .

[7]  C. Villani Topics in Optimal Transportation , 2003 .

[8]  Equivalence between some definitions for the optimal mass transport problem and for the transport density on manifolds , 2005 .

[9]  S. Rachev,et al.  Mass transportation problems , 1998 .

[10]  L. Kantorovich On a Problem of Monge , 2006 .

[11]  A. Üstünel,et al.  Monge-Kantorovitch Measure Transportation and Monge-Ampère Equation on Wiener Space , 2004 .

[12]  P. Bernard,et al.  Optimal mass transportation and Mather theory , 2004, math/0412299.

[13]  L. Rüschendorf On c-optimal random variables , 1996 .

[14]  L. Ambrosio Lecture Notes on Optimal Transport Problems , 2003 .

[15]  R. Rockafellar Characterization of the subdifferentials of convex functions , 1966 .

[16]  L. Evans Partial Differential Equations and Monge-Kantorovich Mass Transfer , 1997 .

[17]  A. Üstünel,et al.  Measure transport on Wiener space and the Girsanov theorem , 2002 .