Functional Classification and Experimental Dissection of Long Noncoding RNAs

[1]  H. Blyth Chromosomes , 1972 .

[2]  Carolyn J. Brown,et al.  A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome , 1991, Nature.

[3]  A. Ashworth,et al.  Conservation of position and exclusive expression of mouse Xist from the inactive X chromosome , 1991, Nature.

[4]  Marvin Wickens,et al.  A PUF family portrait: 3'UTR regulation as a way of life. , 2002, Trends in genetics : TIG.

[5]  Michael Thomas,et al.  MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer , 2003, Oncogene.

[6]  N. Krogan,et al.  The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II , 2004, Nature.

[7]  N. Proudfoot,et al.  Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites , 2004, Nature.

[8]  J. Steitz,et al.  Evidence for reassociation of RNA-binding proteins after cell lysis: implications for the interpretation of immunoprecipitation analyses. , 2004, RNA.

[9]  J. B. Jaynes,et al.  Transcription of bxd Noncoding RNAs Promoted by Trithorax Represses Ubx in cis by Transcriptional Interference , 2006, Cell.

[10]  John N. Hutchinson,et al.  A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains , 2007, BMC Genomics.

[11]  Howard Y. Chang,et al.  Functional Demarcation of Active and Silent Chromatin Domains in Human HOX Loci by Noncoding RNAs , 2007, Cell.

[12]  Tyson A. Clark,et al.  HITS-CLIP yields genome-wide insights into brain alternative RNA processing , 2008, Nature.

[13]  Leighton J. Core,et al.  Nascent RNA Sequencing Reveals Widespread Pausing and Divergent Initiation at Human Promoters , 2008, Science.

[14]  Gene W. Yeo,et al.  Divergent Transcription from Active Promoters , 2008, Science.

[15]  Jeannie T. Lee,et al.  Polycomb Proteins Targeted by a Short Repeat RNA to the Mouse X Chromosome , 2008, Science.

[16]  John N. Hutchinson,et al.  An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. , 2009, Molecular cell.

[17]  Paulo P. Amaral,et al.  MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. , 2009, Genome research.

[18]  T. Mituyama,et al.  MENε/β noncoding RNAs are essential for structural integrity of nuclear paraspeckles , 2009, Proceedings of the National Academy of Sciences.

[19]  Pierre-Étienne Jacques,et al.  Yeast RNase III triggers polyadenylation-independent transcription termination. , 2009, Molecular cell.

[20]  Howard Y. Chang,et al.  Long Noncoding RNA as Modular Scaffold of Histone Modification Complexes , 2010, Science.

[21]  Scott B. Dewell,et al.  Transcriptome-wide Identification of RNA-Binding Protein and MicroRNA Target Sites by PAR-CLIP , 2010, Cell.

[22]  B. Blencowe,et al.  The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. , 2010, Molecular cell.

[23]  Michael Q. Zhang,et al.  A long nuclear‐retained non‐coding RNA regulates synaptogenesis by modulating gene expression , 2010, EMBO Journal.

[24]  J. Rinn,et al.  A Large Intergenic Noncoding RNA Induced by p53 Mediates Global Gene Repression in the p53 Response , 2010, Cell.

[25]  J. Ule,et al.  iCLIP reveals the function of hnRNP particles in splicing at individual nucleotide resolution , 2010, Nature Structural &Molecular Biology.

[26]  Michael F. Lin,et al.  PhyloCSF: a comparative genomics method to distinguish protein-coding and non-coding regions , 2010 .

[27]  A. Lamond,et al.  Nuclear speckles. , 2011, Cold Spring Harbor perspectives in biology.

[28]  D. Spector,et al.  Direct Visualization of the Co-transcriptional Assembly of a Nuclear Body by Noncoding RNAs , 2010, Nature Cell Biology.

[29]  John J Dunn,et al.  Distinct p53 genomic binding patterns in normal and cancer-derived human cells , 2011, Cell cycle.

[30]  Jørgen Kjems,et al.  miRNA‐dependent gene silencing involving Ago2‐mediated cleavage of a circular antisense RNA , 2011, The EMBO journal.

[31]  D. Bartel,et al.  Conserved Function of lincRNAs in Vertebrate Embryonic Development despite Rapid Sequence Evolution , 2011, Cell.

[32]  S. Nakagawa,et al.  Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice , 2011, The Journal of cell biology.

[33]  W. Olivas,et al.  Roles of Puf proteins in mRNA degradation and translation , 2011, Wiley interdisciplinary reviews. RNA.

[34]  Howard Y. Chang,et al.  Genomic maps of long noncoding RNA occupancy reveal principles of RNA-chromatin interactions. , 2011, Molecular cell.

[35]  H. Lodish,et al.  Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. , 2011, Genes & development.

[36]  B. Berkhout,et al.  Microprocessor, Setx, Xrn2, and Rrp6 Co-operate to Induce Premature Termination of Transcription by RNAPII , 2012, Cell.

[37]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[38]  Shinichi Nakagawa,et al.  Malat1 is not an essential component of nuclear speckles in mice. , 2012, RNA.

[39]  Airn Transcriptional Overlap, But Not Its lncRNA Products, Induces Imprinted Igf2r Silencing , 2012, Science.

[40]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[41]  Chaolin Zhang,et al.  The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. , 2012, Cell reports.

[42]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[43]  Michael F. Lin,et al.  Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. , 2012, Genome research.

[44]  H. Lodish,et al.  Regulation of mammalian cell differentiation by long non‐coding RNAs , 2012, EMBO reports.

[45]  A. Mayeda,et al.  Identification of cis- and trans-acting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. , 2012, RNA.

[46]  P. Schirmacher,et al.  Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development , 2012, RNA biology.

[47]  J. Kjems,et al.  Natural RNA circles function as efficient microRNA sponges , 2013, Nature.

[48]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[49]  David R. Kelley,et al.  Long noncoding RNAs regulate adipogenesis , 2013, Proceedings of the National Academy of Sciences.

[50]  Michael Morse,et al.  Multiple knockout mouse models reveal lincRNAs are required for life and brain development , 2013, eLife.

[51]  Nicholas T. Ingolia,et al.  Ribosome Profiling Provides Evidence that Large Noncoding RNAs Do Not Encode Proteins , 2013, Cell.

[52]  E. Lander,et al.  The Xist lncRNA Exploits Three-Dimensional Genome Architecture to Spread Across the X Chromosome , 2013, Science.

[53]  D. Bartel,et al.  lincRNAs: Genomics, Evolution, and Mechanisms , 2013, Cell.

[54]  D. Spector,et al.  The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. , 2013, Cancer research.

[55]  S. Diederichs,et al.  MALAT1 — a paradigm for long noncoding RNA function in cancer , 2013, Journal of Molecular Medicine.

[56]  Vikram Agarwal,et al.  Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. , 2014, Molecular cell.

[57]  Shinichi Nakagawa,et al.  The long noncoding RNA Neat1 is required for mammary gland development and lactation , 2014, RNA.

[58]  Sharon R Grossman,et al.  RNA-RNA Interactions Enable Specific Targeting of Noncoding RNAs to Nascent Pre-mRNAs and Chromatin Sites , 2014, Cell.

[59]  Phillip A Sharp,et al.  Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. , 2014, Molecular cell.

[60]  Michael Y Tolstorukov,et al.  The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. , 2014, Molecular cell.

[61]  P. Pandolfi,et al.  The multilayered complexity of ceRNA crosstalk and competition , 2014, Nature.

[62]  Nicholas T Ingolia,et al.  Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. , 2014, Cell reports.

[63]  P. Sharp,et al.  LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. , 2014, Molecular cell.

[64]  Eiki Takahashi,et al.  The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice , 2014, Development.

[65]  M. Guttman,et al.  Methods for comprehensive experimental identification of RNA-protein interactions , 2014, Genome Biology.

[66]  R. Dowell,et al.  Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms , 2014, eLife.

[67]  S. Dimmeler,et al.  Long Noncoding RNA MALAT1 Regulates Endothelial Cell Function and Vessel Growth , 2014, Circulation Research.

[68]  David R. Kelley,et al.  Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre , 2014, Nature Structural &Molecular Biology.

[69]  P. Avner,et al.  Xist localization and function: new insights from multiple levels , 2015, Genome Biology.

[70]  D. Gallie Faculty Opinions recommendation of The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. , 2015 .

[71]  Jeannie T. Lee,et al.  Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. , 2015, Science.

[72]  N. Brockdorff,et al.  A Pooled shRNA Screen Identifies Rbm15, Spen, and Wtap as Factors Required for Xist RNA-Mediated Silencing , 2015, Cell reports.

[73]  G. Mills,et al.  Comprehensive Genomic Characterization of Long Non-coding RNAs across Human Cancers. , 2015, Cancer cell.

[74]  T. Cech,et al.  Toward a consensus on the binding specificity and promiscuity of PRC2 for RNA. , 2015, Molecular cell.

[75]  Qiangfeng Cliff Zhang,et al.  Systematic Discovery of Xist RNA Binding Proteins , 2015, Cell.

[76]  S. Thore,et al.  Identification of Spen as a Crucial Factor for Xist Function through Forward Genetic Screening in Haploid Embryonic Stem Cells , 2015, Cell reports.

[77]  N. Hannett,et al.  Transcription factor trapping by RNA in gene regulatory elements , 2015, Science.

[78]  A. Jauch,et al.  p53-dependent non-coding RNA networks in chronic lymphocytic leukemia , 2015, Leukemia.

[79]  Chromosomes. A comprehensive Xist interactome reveals cohesin repulsion and an RNA-directed chromosome conformation. , 2015, Science.

[80]  Joshua J. White,et al.  Pumilio1 Haploinsufficiency Leads to SCA1-like Neurodegeneration by Increasing Wild-Type Ataxin1 Levels , 2015, Cell.

[81]  John M. Shelton,et al.  A Micropeptide Encoded by a Putative Long Noncoding RNA Regulates Muscle Performance , 2015, Cell.

[82]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[83]  E. Lander,et al.  Local regulation of gene expression by lncRNA promoters, transcription and splicing , 2016, Nature.

[84]  S. Aerts,et al.  p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity , 2016, Nature Medicine.

[85]  A. Krainer,et al.  Abstract PR11: Differentiation of mammary tumors and reduction in metastasis upon Malat1 LncRNA loss , 2016 .

[86]  M. Rosenfeld,et al.  Enhancers as non-coding RNA transcription units: recent insights and future perspectives , 2016, Nature Reviews Genetics.

[87]  Gene W. Yeo,et al.  Robust transcriptome-wide discovery of RNA binding protein binding sites with enhanced CLIP (eCLIP) , 2016, Nature Methods.

[88]  S. Itzkovitz,et al.  A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells , 2015, Nature Communications.

[89]  Zhongzheng Cao,et al.  Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR–Cas9 library , 2016, Nature Biotechnology.

[90]  Wei Wu,et al.  NONCODE 2016: an informative and valuable data source of long non-coding RNAs , 2015, Nucleic Acids Res..

[91]  Noah Ollikainen,et al.  Xist recruits the X chromosome to the nuclear lamina to enable chromosome-wide silencing , 2016, Science.

[92]  Sharon R Grossman,et al.  Systematic mapping of functional enhancer–promoter connections with CRISPR interference , 2016, Science.

[93]  Howard Y. Chang,et al.  A Long Noncoding RNA lincRNA-EPS Acts as a Transcriptional Brake to Restrain Inflammation , 2016, Cell.

[94]  J. Rinn,et al.  In Vivo Characterization of Linc-p21 Reveals Functional cis-Regulatory DNA Elements. , 2016, Cell reports.

[95]  Tsung-Cheng Chang,et al.  Noncoding RNA NORAD Regulates Genomic Stability by Sequestering PUMILIO Proteins , 2016, Cell.

[96]  Ling-Ling Chen The biogenesis and emerging roles of circular RNAs , 2016, Nature Reviews Molecular Cell Biology.

[97]  John M. Shelton,et al.  Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development , 2016, Nature.

[98]  Carmen Birchmeier,et al.  Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function , 2017, Science.

[99]  Jesse M. Engreitz,et al.  Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood , 2017, Nature.

[100]  R. Margueron,et al.  PRC2 is dispensable for HOTAIR‐mediated transcriptional repression , 2017, The EMBO journal.

[101]  Howard Y. Chang,et al.  NONCODING RNA: CRISPRi‐based genome‐scale identification of functional long noncoding RNA loci in human cells , 2017 .

[102]  J. Rinn,et al.  Neat1 is a p53-inducible lincRNA essential for transformation suppression , 2017, Genes & development.

[103]  Edith Heard,et al.  Novel players in X inactivation: insights into Xist-mediated gene silencing and chromosome conformation , 2017, Nature Structural &Molecular Biology.

[104]  Timothy E. Reddy,et al.  CRISPR–Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome , 2017, Nature Biotechnology.

[105]  Ling-Ling Chen,et al.  SLERT Regulates DDX21 Rings Associated with Pol I Transcription , 2017, Cell.

[106]  Akinobu Matsumoto,et al.  mTORC1 and muscle regeneration are regulated by the LINC00961-encoded SPAR polypeptide , 2016, Nature.

[107]  10. Comprehensive genomic characterization of pediatric B-ALL , 2018, Cancer Genetics.