Fault Detection and Diagnosis Techniques for Molecular Computing

Fault detection and diagnosis techniques that are essential for defect tolerance, fault tolerance and self-repair of molecular computing systems are discussed. These techniques enable robust molecular computing system design protected from manufacturing defects and run-time errors in the underlying hardware.

[1]  Edward J. McCluskey Verification Testing - A Pseudoexhaustive Test Technique , 1984, IEEE Trans. Computers.

[2]  R. Williams,et al.  Chemical vapor deposition of Si nanowires nucleated by TiSi2 islands on Si , 2000 .

[3]  Mehdi Baradaran Tahoori Application-Dependent Testing of FPGAs , 2006, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[4]  S.C. Goldstein,et al.  Digital logic using molecular electronics , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[5]  Melvin A. Breuer,et al.  Digital systems testing and testable design , 1990 .

[6]  Mehdi Baradaran Tahoori,et al.  Automatic configuration generation for FPGA interconnect testing , 2003, Proceedings. 21st VLSI Test Symposium, 2003..

[7]  Charles E. Stroud,et al.  Using roving STARs for on-line testing and diagnosis of FPGAs in fault-tolerant applications , 1999, International Test Conference 1999. Proceedings (IEEE Cat. No.99CH37034).

[8]  E.J. McCluskey,et al.  Concurrent error detection and testing for large PLA's , 1982, IEEE Transactions on Electron Devices.

[9]  Seth Copen Goldstein,et al.  NanoFabrics: spatial computing using molecular electronics , 2001, ISCA 2001.

[10]  Mehdi Baradaran Tahoori,et al.  A multi-configuration strategy for an application dependent testing of FPGAs , 2004, 22nd IEEE VLSI Test Symposium, 2004. Proceedings..

[11]  Mircea R. Stan,et al.  Design and analysis of crossbar circuits for molecular nanoelectronics , 2002, Proceedings of the 2nd IEEE Conference on Nanotechnology.

[12]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[13]  T. Cao,et al.  Logic Gates and Computation from Assembled Nanowire Building Blocks , 2001 .

[14]  Yoon,et al.  Crossed nanotube junctions , 2000, Science.

[15]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[16]  Robert S. Swarz,et al.  Reliable Computer Systems: Design and Evaluation , 1992 .

[17]  Stoddart,et al.  Electronically configurable molecular-based logic gates , 1999, Science.

[18]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .

[19]  André DeHon,et al.  Array-based architecture for FET-based, nanoscale electronics , 2003 .

[20]  Paul Beckett,et al.  Exploiting multiple functionality for nano-scale reconfigurable systems , 2003, GLSVLSI '03.

[21]  Edward J. McCluskey,et al.  Stuck-fault tests vs. actual defects , 2000, Proceedings International Test Conference 2000 (IEEE Cat. No.00CH37159).

[22]  Charles E. Stroud,et al.  DIST-based detection and diagnosis of multiple faults in FPGAs , 2000, Proceedings International Test Conference 2000 (IEEE Cat. No.00CH37159).

[23]  André DeHon,et al.  Stochastic assembly of sublithographic nanoscale interfaces , 2003 .

[24]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[25]  Dhiraj K. Pradhan,et al.  Fault-tolerant computer system design , 1996 .

[26]  Richard J. Carter,et al.  Defect tolerance on the Teramac custom computer , 1997, Proceedings. The 5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines Cat. No.97TB100186).

[27]  Mehdi Baradaran Tahoori,et al.  Diagnosis of open defects in FPGA interconnect , 2002, 2002 IEEE International Conference on Field-Programmable Technology, 2002. (FPT). Proceedings..