Eliciting Bid Taker Non-price Preferences in (Combinatorial) Auctions

Recent algorithms provide powerful solutions to the problem of determining cost-minimizing (or revenue-maximizing) allocations of items in combinatorial auctions. However, in many settings, criteria other than cost (e.g., the number of winners, the delivery date of items, etc.) are also relevant in judging the quality of an allocation. Furthermore, the bid taker is usually uncertain about her preferences regarding tradeoffs between cost and nonprice features. We describe new methods that allow the bid taker to determine (approximately) optimal allocations despite this. These methods rely on the notion of minimax regret to guide the elicitation of preferences from the bid taker and to measure the quality of an allocation in the presence of utility function uncertainty. Computational experiments demonstrate the practicality of minimax computation and the efficacy of our elicitation techniques.

[1]  David Levine,et al.  CABOB: A Fast Optimal Algorithm for Combinatorial Auctions , 2001, IJCAI.

[2]  S. Thomas McCormick,et al.  Integer Programming and Combinatorial Optimization , 1996, Lecture Notes in Computer Science.

[3]  Tuomas Sandholm,et al.  An algorithm for optimal winner determination in combinatorial auctions , 1999, IJCAI 1999.

[4]  Andrew P. Sage,et al.  A model of multiattribute decisionmaking and trade-off weight determination under uncertainty , 1984, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Peter Haddawy,et al.  Problem-Focused Incremental Elicitation of Multi-Attribute Utility Models , 1997, UAI.

[6]  Tuomas Sandholm,et al.  Partial-revelation VCG mechanism for combinatorial auctions , 2002, AAAI/IAAI.

[7]  Tuomas Sandholm,et al.  Preference elicitation in combinatorial auctions , 2001, AAMAS '02.

[8]  Ronen I. Brafman,et al.  UCP-Networks: A Directed Graphical Representation of Conditional Utilities , 2001, UAI.

[9]  S. Rassenti,et al.  A Combinatorial Auction Mechanism for Airport Time Slot Allocation , 1982 .

[10]  Tuomas Sandholm,et al.  Algorithm for optimal winner determination in combinatorial auctions , 2002, Artif. Intell..

[11]  David C. Parkes,et al.  Preference elicitation in proxied multiattribute auctions , 2003, EC '03.

[12]  Raimo P. Hämäläinen,et al.  Preference ratios in multiattribute evaluation (PRIME)-elicitation and decision procedures under incomplete information , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[13]  Yoav Shoham,et al.  Taming the Computational Complexity of Combinatorial Auctions: Optimal and Approximate Approaches , 1999, IJCAI.

[14]  George Apostolakis,et al.  Decision theory , 1986 .

[15]  T. Sandholm,et al.  Preference Elicitation in Combinatorial Auctions (Extended Abstract) , 2001 .

[16]  David Levine,et al.  Winner determination in combinatorial auction generalizations , 2002, AAMAS '02.

[17]  Subhash Suri,et al.  Side constraints and non-price attributes in markets , 2006, Games Econ. Behav..

[18]  Allan Borodin,et al.  Online computation and competitive analysis , 1998 .

[19]  Ronald M. Harstad,et al.  Computationally Manageable Combinational Auctions , 1998 .

[20]  Craig Boutilier,et al.  A POMDP formulation of preference elicitation problems , 2002, AAAI/IAAI.

[21]  L. J. Savage,et al.  The Foundations of Statistics , 1955 .

[22]  Craig Boutilier,et al.  Constraint-Based Optimization with the Minimax Decision Criterion , 2003, CP.

[23]  Daphne Koller,et al.  Making Rational Decisions Using Adaptive Utility Elicitation , 2000, AAAI/IAAI.

[24]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  Ariel D. Procaccia,et al.  Strategyproof Classification with Shared Inputs , 2009, IJCAI.