Incorporation of Yb3+ ions in multicomponent phase-separated fibre glass preforms

The local environment around Yb3+ ions in silica-based optic fibre preforms has been studied in specimens with different composition and submitted to different annealing processes. The formation upon annealing of nano-sized particles of YbPO4 has been evidenced by X-ray Absorption Spectroscopy whereas optical luminescence present Stark-split states in the anti-Stokes lines, typical of a structurally ordered phase. This evidences the preferential location of Yb in highly coordinated phosphate environment, with remarkable effects of such ordered phase on the optical response of the system. This study confirms and extends analogous observations done in previous literature on Erbium in similar glasses.

[1]  P. A. Tick,et al.  Are low-loss glass ceramic optical waveguides possible? , 1998, Optics letters.

[2]  Société française de minéralogie et de cristallographie Bulletin de la Société Française de Minéralogie et de Cristallographie , 2009 .

[3]  A. Fert Structure de quelques oxydes de terres rares , 1962 .

[4]  F. d’Acapito,et al.  X-ray Optics of a Dynamical Sagittal-Focusing Monochromator on the GILDA Beamline at the ESRF. , 1996, Journal of synchrotron radiation.

[5]  Eiichiro Nakazawa,et al.  Cooperative Luminescence in YbPO 4 , 1970 .

[6]  Takashi Handa,et al.  Aluminum or phosphorus co‐doping effects on the fluorescence and structural properties of neodymium‐doped silica glass , 1986 .

[7]  I. D. Brown,et al.  Bond‐valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database , 1985 .

[8]  F. d’Acapito,et al.  Local order around Er3+ ions in SiO2-TiO2-Al2O3 glassy films studied by EXAFS , 2001 .

[9]  W. Miniscalco Erbium-doped glasses for fiber amplifiers at 1500 nm , 1991 .

[10]  M. Ferrari,et al.  EXAFS studies of the local structure of Er3+ ions in silica xerogels co-doped with aluminium , 2001 .

[11]  Romain Peretti,et al.  Spectroscopic signature of phosphate crystallization in erbium-doped optical fibre preforms , 2011, 1103.2847.

[12]  A. Ankudinov,et al.  REAL-SPACE MULTIPLE-SCATTERING CALCULATION AND INTERPRETATION OF X-RAY-ABSORPTION NEAR-EDGE STRUCTURE , 1998 .

[13]  Robin W. Grimes,et al.  Disorder in Pyrochlore Oxides , 2004 .

[14]  Julian D. Gale,et al.  GULP: A computer program for the symmetry-adapted simulation of solids , 1997 .

[15]  Philippe Goldner,et al.  Dependence of cooperative luminescence intensity on Yb 3 + spatial distribution in crystals and glasses , 2002 .

[16]  D. Tang,et al.  Diode-end-pumped 4.2-W continuous-wave Yb:Y2O3 ceramic laser. , 2004, Optics letters.

[17]  Role of CaO addition in the local order around Erbium in SiO2-GeO2-P2O5 fiber preforms , 2008, 0911.1252.

[18]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[19]  L. Boatner,et al.  Structures of ErPO4, TmPO4, and YbPO4 , 1983 .

[20]  J. Nishii,et al.  Elucidation of codoping effects on the solubility enhancement of Er3+ in SiO2 glass: striking difference between Al and P codoping. , 2006, Journal of Physical Chemistry B.

[21]  F. d’Acapito,et al.  Structure of Er-O complexes in crystalline Si , 2004 .

[22]  A. Speghini,et al.  Optical Spectroscopy and Upconversion Studies of Ho3+-Doped Bulk and Nanocrystalline Y2O3 , 2002 .

[23]  P. Goldner,et al.  Yb3+ distribution in LiNbO3:(MgO) studied by cooperative luminescence , 2001 .

[24]  E. A. Poraĭ-Koshit︠s︡,et al.  Phase separation in glass , 1984 .

[25]  Philippe Goldner,et al.  Cooperative luminescence as a probe of clustering in Yb3+ doped glasses , 2000 .