Control and Generation of Localized Pulses in Passively Mode-Locked Semiconductor Lasers

We show experimentally and theoretically that localized pulses can be generated from an electrically biased 200 μm multitransverse-mode vertical-cavity surface-emitting laser. The device is passively mode-locked using optical feedback from a distant resonant saturable absorber mirror and is operated below its threshold. We observe multistability between the nonlasing (off) solution and a large variety of pulsating solutions which have a different number and arrangement of pulses per round trip, thus indicating that the mode-locked pulses are localized, i.e., mutually independent. We show that modulation of the bias current allows control of the number and the location of the pulses traveling within the cavity, thus suggesting that our system can be operated as an arbitrary pattern generator of mode-locked pulses.

[1]  Pulse Formation, Harmonic Mode-Locking, and Stability in Actively Mode-Locked Laser Cavities , 2009, IEEE Journal of Quantum Electronics.

[2]  P. Coullet,et al.  Stable static localized structures in one dimension , 2000, Physical review letters.

[3]  Daniil I. Nikitichev,et al.  Broad Repetition-Rate Tunable Quantum-Dot External-Cavity Passively Mode-Locked Laser with Extremely Narrow Radio Frequency Linewidth , 2011 .

[4]  J. Javaloyes,et al.  Mode-Locking in Semiconductor Fabry-Pérot Lasers , 2010, IEEE Journal of Quantum Electronics.

[5]  Ursula Keller,et al.  Passively modelocked surface-emitting semiconductor lasers , 2006 .

[6]  Martin R. Hofmann,et al.  High peak power pulses from dispersion optimised modelocked semiconductor laser , 2013 .

[7]  J. Javaloyes,et al.  How Laser Localized Structures Evolve Out of Passive Mode-Locking , 2014, 2014 International Semiconductor Laser Conference.

[8]  S. Balle,et al.  Passive Mode-Locking and Tilted Waves in Broad-Area Vertical-Cavity Surface-Emitting Lasers , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  M. Thompson,et al.  External-Cavity Mode-Locked Quantum-Dot Laser Diodes for Low Repetition Rate, Sub-Picosecond Pulse Generation , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  Daniil I. Nikitichev,et al.  High-Power Versatile Picosecond Pulse Generation from Mode-Locked Quantum-Dot Laser Diodes , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  H. Haus Theory of mode locking with a slow saturable absorber , 1975 .

[12]  Peter P. Vasil'ev,et al.  Generation of bandwidth-limited 2 ps pulses with 100 GHz repetition rate from multisegmented injection laser , 1989 .

[13]  David J. Richardson,et al.  Optical Code Division Multiple Access Communication Networks: Theory and Applications , 2009 .

[14]  S. Balle,et al.  Quasiequilibrium time-domain susceptibility of semiconductor quantum wells , 2010 .

[15]  E. L. Portnoi,et al.  Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications , 2000 .

[16]  D. Turaev,et al.  Model for passive mode locking in semiconductor lasers (13 pages) , 2005 .

[17]  H. Haus Mode-locking of lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  M. Sorel,et al.  Spectral Dynamical Behavior in Passively Mode-Locked Semiconductor Lasers , 2011, IEEE Photonics Journal.

[19]  Chien-Ping Lee,et al.  Low repetition rate and broad frequency tuning from a grating-coupled passively mode-locked quantum dot laser , 2013 .

[20]  G. Samaey,et al.  DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations , 2001 .

[21]  Detuning and Thermal Effects on the Dynamics of Passively Mode-Locked Quantum-Well Lasers , 2012, IEEE Journal of Quantum Electronics.

[22]  N. Takeuchi,et al.  Random modulation cw lidar. , 1983, Applied optics.

[23]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[24]  E. Viktorov,et al.  85.7 MHz repetition rate mode-locked semiconductor disk laser: fundamental and soliton bound states. , 2013, Optics express.

[25]  H. Haus Theory of mode locking with a fast saturable absorber , 1975 .

[26]  F. Kärtner,et al.  Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers , 1996 .

[27]  N. Takeuchi,et al.  Diode-laser random-modulation cw lidar. , 1986, Applied optics.

[28]  C. Shank,et al.  Femtosecond optical pulses , 1983 .

[29]  R. Michalzik,et al.  Bottom-emitting VCSEL's for high-CW optical output power , 1998, IEEE Photonics Technology Letters.

[30]  P. Grelu,et al.  Dissipative solitons for mode-locked lasers , 2012, Nature Photonics.

[31]  Giacomelli,et al.  Relationship between delayed and spatially extended dynamical systems. , 1996, Physical review letters.

[32]  E. Ippen,et al.  Passively modelocked vertical extended cavity surface emitting diode laser , 2003 .

[33]  Meucci,et al.  Two-dimensional representation of a delayed dynamical system. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[34]  J. Javaloyes,et al.  Topological solitons as addressable phase bits in a driven laser , 2014, Nature Communications.

[35]  P Coullet,et al.  A new approach to data storage using localized structures. , 2004, Chaos.

[36]  J. Javaloyes,et al.  Subpicosecond Colliding Pulse Mode Locking at 126 GHz in Monolithic GaAs/AlGaAs Quantum Well Lasers: Experiments and Theory , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[37]  J. Javaloyes,et al.  Anti-colliding design for monolithic passively mode-locked semiconductor lasers , 2011, 2012 38th European Conference and Exhibition on Optical Communications.

[38]  Rüdiger Paschotta,et al.  High power passively mode-locked semiconductor lasers , 2003 .