Unraveling the Mechanism of Nanoscale Mechanical Reinforcement in Glassy Polymer Nanocomposites.

The mechanical reinforcement of polymer nanocomposites (PNCs) above the glass transition temperature, Tg, has been extensively studied. However, not much is known about the origin of this effect below Tg. In this Letter, we unravel the mechanism of PNC reinforcement within the glassy state by directly probing nanoscale mechanical properties with atomic force microscopy and macroscopic properties with Brillouin light scattering. Our results unambiguously show that the "glassy" Young's modulus in the interfacial polymer layer of PNCs is two-times higher than in the bulk polymer, which results in significant reinforcement below Tg. We ascribe this phenomenon to a high stretching of the chains within the interfacial layer. Since the interfacial chain packing is essentially temperature independent, these findings provide a new insight into the mechanical reinforcement of PNCs also above Tg.

[1]  A. Halperin,et al.  Atomic force microscopy of polymer brushes: colloidal versus sharp tips. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[2]  Ming Liu,et al.  Immobilized polymer layers on spherical nanoparticles , 2010 .

[3]  L. Archer,et al.  Phase stability and dynamics of entangled polymer–nanoparticle composites , 2015, Nature Communications.

[4]  O. Guiselin Irreversible Adsorption of a Concentrated Polymer Solution , 1992 .

[5]  F. Lequeux,et al.  Solid particles in an elastomer matrix: impact of colloid dispersion and polymer mobility modification on the mechanical properties , 2012 .

[6]  L. Schadler,et al.  Designed Interfaces in Polymer Nanocomposites: A Fundamental Viewpoint , 2007 .

[7]  Xiaoxiao Li,et al.  A phenomenological molecular model for yielding and brittle-ductile transition of polymer glasses. , 2014, The Journal of chemical physics.

[8]  Sergei V. Kalinin,et al.  Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy , 2009, Nanotechnology.

[9]  Jack C. Smith Correction and Extension of van der Poel's Method for Calculating the Shear Modulus of a Particulate Composite. , 1974, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[10]  Horacio E. Bergna,et al.  Colloidal Silica : Fundamentals and Applications , 2005 .

[11]  R. Vaia,et al.  Polymer Nanocomposites: Status and Opportunities , 2001 .

[12]  P. Gennes Scaling theory of polymer adsorption , 1976 .

[13]  Stephen Jesse,et al.  The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale , 2007, 0708.4248.

[14]  Salmon M. Kalkhoran,et al.  Nanoscale visualization and multiscale mechanical implications of bound rubber interphases in rubber-carbon black nanocomposites† , 2011 .

[15]  R. Hoy,et al.  Effect of Particle Size, Temperature, and Deformation Rate on the Plastic Flow and Strain Hardening Response of PMMA Composites , 2013 .

[16]  K. Matyjaszewski,et al.  Role of Polymer Graft Architecture on the Acoustic Eigenmode Formation in Densely Polymer-Tethered Colloidal Particles. , 2014, ACS macro letters.

[17]  R. Colby,et al.  Segmental Dynamics of Polymer Melts with Spherical Nanoparticles. , 2014, ACS macro letters.

[18]  M. Popall,et al.  Applications of hybrid organic–inorganic nanocomposites , 2005 .

[19]  F. Lequeux,et al.  Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry. , 2012, Physical review letters.

[20]  P. G. de Gennes,et al.  Polymers at an interface; a simplified view , 1987 .

[21]  G. Fredrickson,et al.  Surface modes and deformation energy of a molten polymer brush , 1992 .

[22]  D. Ter Haar,et al.  Mechanics: course of theoretical physics: L.D. Landau and E.M. Lifshitz. 3rd Edit., Vol. 1, 169+xxvii, pp. 58 illus., 6×912in., Pergamon Press, Oxford, 1976. Price, $12.50. , 1977 .

[23]  V. Bocharova,et al.  Dynamics at the Polymer/Nanoparticle Interface in Poly(2-vinylpyridine)/Silica Nanocomposites , 2014 .

[24]  D. Long,et al.  Gradient of glass transition temperature in filled elastomers , 2003 .

[25]  Zvi Hashin,et al.  Thermoelastic properties of particulate composites with imperfect interface , 1991 .

[26]  P. Nealey,et al.  Local mechanical properties of polymeric nanocomposites. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  F. Snijkers,et al.  Dispersing Grafted Nanoparticle Assemblies into Polymer Melts through Flow Fields. , 2013, ACS macro letters.

[28]  C. Macosko,et al.  AFM probing of polymer/nanofiller interfacial adhesion and its correlation with bulk mechanical properties in a poly(ethylene terephthalate) nanocomposite. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[29]  J. Kysar,et al.  Mechanical properties of thin glassy polymer films filled with spherical polymer-grafted nanoparticles. , 2012, Nano letters.

[30]  S. Anandhan,et al.  Polymer Nanocomposites: From Synthesis to Applications , 2011 .

[31]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[32]  Daniel W. Spring,et al.  Filled elastomers: A theory of filler reinforcement based on hydrodynamic and interphasial effects , 2015 .

[33]  Suprakas Sinha Ray,et al.  POLYMER/LAYERED SILICATE NANOCOMPOSITES: A REVIEW FROM PREPARATION TO PROCESSING , 2003 .

[34]  Christopher W. Macosko,et al.  Does Graphene Change Tg of Nanocomposites? , 2014 .

[35]  Guido Raos,et al.  Theories and simulations of polymer-based nanocomposites: From chain statistics to reinforcement , 2008 .

[36]  G. J. Fleer,et al.  Statistical theory of the adsorption of interacting chain molecules. II. Train, loop, and tail size distribution , 1980 .

[37]  D. Long,et al.  Evidence for the Shift of the Glass Transition near the Particles in Silica-Filled Elastomers , 2002 .

[38]  V. Mittal Characterization Techniques for Polymer Nanocomposites: MITTAL:PNC CHARACTERIZ. O-BK , 2012 .

[39]  Monojoy Goswami,et al.  Untangling the Effects of Chain Rigidity on the Structure and Dynamics of Strongly Adsorbed Polymer Melts , 2015 .

[40]  Markus J. Buehler,et al.  Current issues in research on structure–property relationships in polymer nanocomposites , 2010 .

[41]  R. Colby,et al.  Mechanical Reinforcement of Polymer Nanocomposites from Percolation of a Nanoparticle Network. , 2015, ACS macro letters.

[42]  R. Bogoslovov,et al.  Effect of Silica Nanoparticles on the Local Segmental Dynamics in Poly(vinyl acetate) , 2008 .

[43]  J. Joanny,et al.  Adsorption of Polymer Solutions onto a Flat Surface , 1996 .

[44]  Linda S. Schadler,et al.  Anisotropic self-assembly of spherical polymer-grafted nanoparticles. , 2009, Nature materials.

[45]  Sanat K. Kumar,et al.  Nanocomposites: structure, phase behavior, and properties. , 2010, Annual review of chemical and biomolecular engineering.

[46]  V. Bocharova,et al.  Unexpected Molecular Weight Effect in Polymer Nanocomposites. , 2016, Physical review letters.

[47]  K. Schweizer,et al.  Theory of glassy dynamics in conformationally anisotropic polymer systems. , 2005, The Journal of chemical physics.

[48]  V. Mittal Modeling and Prediction of Polymer Nanocomposite Properties: MITTAL:PNC MODELING O-BK , 2013 .

[49]  F. Maurer An Interlayer Model to Describe the Physical Properties of Particulate Composites , 1990 .

[50]  L. Robeson,et al.  Polymer nanotechnology: Nanocomposites , 2008 .

[51]  V. Tsukruk,et al.  Probing Soft Matter with the Atomic Force Microscopies: Imaging and Force Spectroscopy , 2010 .

[52]  D. Schneider,et al.  Controlling the thermomechanical behavior of nanoparticle/polymer films. , 2014, ACS nano.

[53]  M. Beiner,et al.  Detection of Surface-Immobilized Components and Their Role in Viscoelastic Reinforcement of Rubber-Silica Nanocomposites. , 2014, ACS macro letters.

[54]  Sergei V. Kalinin,et al.  Multifrequency imaging in the intermittent contact mode of atomic force microscopy: beyond phase imaging. , 2012, Small.

[55]  Jin Kuk Kim,et al.  Recent Advances in Elastomeric Nanocomposites , 2011 .

[56]  A. Kisliuk,et al.  Pressure and density dependence of the boson peak in polymers , 2008 .

[57]  M. Becker,et al.  How Melt-Stretching Affects Mechanical Behavior of Polymer Glasses , 2012 .

[58]  V. Ganesan,et al.  Origins of Linear Viscoelastic Behavior of Polymer−Nanoparticle Composites , 2006 .

[59]  Y. Fujii,et al.  Shear Modulus of a Polymer Brush , 2010 .

[60]  Robert H. Hauge,et al.  Poly(vinyl alcohol)/SWNT Composite Film , 2003 .

[61]  K. Winey,et al.  Macromolecular Diffusion in a Crowded Polymer Nanocomposite , 2011 .

[62]  Donald R Paul,et al.  Rheological behavior of multiwalled carbon nanotube/polycarbonate composites , 2002 .

[63]  Sergei V. Kalinin,et al.  Band excitation in scanning probe microscopy: recognition and functional imaging. , 2014, Annual review of physical chemistry.