Two novel energy dissipative difference schemes for the strongly coupled nonlinear space fractional wave equations with damping

[1]  Calculation of the threshold surface for nerve equations , 1990 .

[2]  L. Vu-Quoc,et al.  INVARIANT-CONSERVING FINITE DIFFERENCE ALGORITHMS FOR THE NONLINEAR KLEIN-GORDON EQUATION , 1993 .

[3]  I. Podlubny Fractional differential equations , 1998 .

[4]  R. Nassar,et al.  A compact finite difference scheme for solving a three‐dimensional heat transport equation in a thin film , 2000 .

[5]  Ernst Hairer,et al.  Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations , 2008, Numerische Mathematik.

[6]  Dong Liang,et al.  Energy-conserved splitting FDTD methods for Maxwell’s equations , 2007, Numerische Mathematik.

[7]  Zhiyue Zhang,et al.  A new high-order algorithm for a class of nonlinear evolution equation , 2008 .

[8]  Dong Liang,et al.  Energy-Conserved Splitting Finite-Difference Time-Domain Methods for Maxwell's Equations in Three Dimensions , 2010, SIAM J. Numer. Anal..

[9]  I. Turner,et al.  Numerical methods for fractional partial differential equations with Riesz space fractional derivatives , 2010 .

[10]  Wansheng Wang,et al.  Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space , 2010, Numerische Mathematik.

[11]  Brynjulf Owren,et al.  A General Framework for Deriving Integral Preserving Numerical Methods for PDEs , 2011, SIAM J. Sci. Comput..

[12]  Cem Çelik,et al.  Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative , 2012, J. Comput. Phys..

[13]  Tingchun Wang,et al.  Fourth-order compact and energy conservative difference schemes for the nonlinear Schrödinger equation in two dimensions , 2013, J. Comput. Phys..

[14]  Xuan Zhao,et al.  A Fourth-order Compact ADI scheme for Two-Dimensional Nonlinear Space Fractional Schrödinger Equation , 2014, SIAM J. Sci. Comput..

[15]  Xinhua Zhang,et al.  Energy-preserving finite volume element method for the improved Boussinesq equation , 2014, J. Comput. Phys..

[16]  Weizhu Bao,et al.  A Uniformly Accurate Multiscale Time Integrator Pseudospectral Method for the Klein-Gordon Equation in the Nonrelativistic Limit Regime , 2014, SIAM J. Numer. Anal..

[17]  Wei Yang,et al.  Maximum-norm error analysis of a difference scheme for the space fractional CNLS , 2015, Appl. Math. Comput..

[18]  Zhi-Zhong Sun,et al.  A fourth-order approximation of fractional derivatives with its applications , 2015, J. Comput. Phys..

[19]  Chengjian Zhang,et al.  Analysis and application of a compact multistep ADI solver for a class of nonlinear viscous wave equations , 2015 .

[20]  William Rundell,et al.  Variational formulation of problems involving fractional order differential operators , 2013, Math. Comput..

[21]  Han Zhou,et al.  A class of second order difference approximations for solving space fractional diffusion equations , 2012, Math. Comput..

[22]  Siu-Long Lei,et al.  High order finite difference method for time-space fractional differential equations with Caputo and Riemann-Liouville derivatives , 2015, Numerical Algorithms.

[23]  M. Reissig,et al.  Global existence for semi-linear structurally damped σ-evolution models , 2015 .

[24]  Hong Wang,et al.  A Fast Finite Element Method for Space-Fractional Dispersion Equations on Bounded Domains in ℝ2 , 2015, SIAM J. Sci. Comput..

[25]  L. Brugnano,et al.  Line Integral Methods for Conservative Problems , 2015 .

[26]  Zhiguo Xu,et al.  Error estimates in the energy space for a Gautschi-type integrator spectral discretization for the coupled nonlinear Klein-Gordon equations , 2016, J. Comput. Appl. Math..

[27]  Three nontrivial solutions for nonlinear fractional Laplacian equations , 2016, 1604.05185.

[28]  Chengming Huang,et al.  Point-wise error estimate of a conservative difference scheme for the fractional Schrödinger equation , 2016, J. Comput. Appl. Math..

[29]  Xiaowei Jia,et al.  A Uniformly Accurate Multiscale Time Integrator Pseudospectral Method for the Dirac Equation in the Nonrelativistic Limit Regime , 2015, SIAM J. Numer. Anal..

[30]  Changpin Li,et al.  Fractional-compact numerical algorithms for Riesz spatial fractional reaction-dispersion equations , 2016, 1608.03077.

[31]  Chengjian Zhang,et al.  A conservative difference scheme for solving the strongly coupled nonlinear fractional Schrödinger equations , 2016, Commun. Nonlinear Sci. Numer. Simul..

[32]  Gabriel Acosta,et al.  A Fractional Laplace Equation: Regularity of Solutions and Finite Element Approximations , 2015, SIAM J. Numer. Anal..

[33]  M. D’Abbicco,et al.  A new phenomenon in the critical exponent for structurally damped semi-linear evolution equations , 2017 .

[34]  Jorge Eduardo Macías-Díaz,et al.  Numerical study of the process of nonlinear supratransmission in Riesz space-fractional sine-Gordon equations , 2017, Commun. Nonlinear Sci. Numer. Simul..

[35]  Jia Zhao,et al.  Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method , 2017, J. Comput. Phys..

[36]  Michal Feckan,et al.  Periodic impulsive fractional differential equations , 2017 .

[37]  Vicentiu D. Rădulescu,et al.  Blow-up solutions for fully nonlinear equations: Existence, asymptotic estimates and uniqueness , 2018, Advances in Nonlinear Analysis.

[38]  Xinyuan Wu,et al.  The formulation and analysis of energy-preserving schemes for solving high-dimensional nonlinear Klein–Gordon equations , 2018, IMA Journal of Numerical Analysis.

[39]  YangQuan Chen,et al.  A new collection of real world applications of fractional calculus in science and engineering , 2018, Commun. Nonlinear Sci. Numer. Simul..

[40]  Xiaogang Yang,et al.  Fully Discrete Second-Order Linear Schemes for Hydrodynamic Phase Field Models of Binary Viscous Fluid Flows with Variable Densities , 2018, SIAM J. Sci. Comput..

[41]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[42]  Meng Li,et al.  A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations , 2018, J. Comput. Phys..

[43]  S. Cooper,et al.  Homogenisation with error estimates of attractors for damped semi-linear anisotropic wave equations , 2018, Advances in Nonlinear Analysis.

[44]  Jie Shen,et al.  Energy stability and convergence of SAV block-centered finite difference method for gradient flows , 2018, Math. Comput..

[45]  W. Lian,et al.  Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term , 2019, Advances in Nonlinear Analysis.

[46]  Zhiyue Zhang,et al.  An analysis of implicit conservative difference solver for fractional Klein-Gordon-Zakharov system , 2019, Appl. Math. Comput..

[47]  Buyang Li,et al.  Energy-Decaying Extrapolated RK-SAV Methods for the Allen-Cahn and Cahn-Hilliard Equations , 2019, SIAM J. Sci. Comput..

[48]  Zhiyue Zhang,et al.  An Effective Dissipation-Preserving Fourth-Order Difference Solver for Fractional-in-Space Nonlinear Wave Equations , 2019, J. Sci. Comput..

[49]  Jorge Eduardo Macías-Díaz,et al.  A parallelized computational model for multidimensional systems of coupled nonlinear fractional hyperbolic equations , 2020, J. Comput. Phys..

[50]  D. Liang,et al.  The energy-preserving finite difference methods and their analyses for system of nonlinear wave equations in two dimensions , 2020 .