Optimal fuzzy control system using the cross-entropy method. A case study of a drilling process

This paper focuses on the optimal tuning of fuzzy control systems using the cross-entropy precise mathematical framework. The design of an optimal fuzzy controller for cutting force regulation in a network-based application and applied to the drilling process is described. The key issue is to obtain optimal fuzzy controller parameters that yield a fast and accurate response with minimum overshoot by minimising the integral time absolute error (ITAE) performance index. Simulation results show that the cross-entropy method does find the optimal solution (i.e. input scaling factors) very accurately, and it can be programmed and implemented very easily (few setting parameters). The results of a comparative study demonstrate that optimal tuning with the cross-entropy method provides a good transient response (without overshoot) and a better error-based performance index than simulated annealing [17], the Nelder-Mead method [14] and genetic algorithms [33]. The experimental results demonstrate that the proposed optimal fuzzy control provides outstanding transient response without overshoot, a small settling time and a minimum steady-state error. The application of optimal fuzzy control reduces rapid drill wear and catastrophic drill breakage due to the increasing and oscillatory cutting forces that occur as the drill depth increases.

[1]  Chaio-Shiung Chen,et al.  Dynamic structure adaptive neural fuzzy control for MIMO uncertain nonlinear systems , 2009, Inf. Sci..

[2]  Suk Lee,et al.  Worst Case Communication Delay of Real-Time Industrial Switched Ethernet With Multiple Levels , 2006, IEEE Transactions on Industrial Electronics.

[3]  D. Martin,et al.  Optimal Tuning of a Networked Linear Controller Using a Multi-Objective Genetic Algorithm. Application to a Complex Electromechanical Process , 2008, 2008 3rd International Conference on Innovative Computing Information and Control.

[4]  Bing Chen,et al.  Direct adaptive fuzzy control for nonlinear systems with time-varying delays , 2010, Inf. Sci..

[5]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[6]  Rodolfo E. Haber,et al.  CORBA-Based Open Platform for Processes Monitoring. An Application to a Complex Electromechanical Process , 2004, International Conference on Computational Science.

[7]  Rodolfo Haber-Haber,et al.  Networked Fuzzy Control System for a High-Performance Drilling Process , 2008 .

[8]  P. J. MacVicar-Whelan Fuzzy sets for man-machine interaction , 1976 .

[9]  Jinxi Xu,et al.  Tuning of fuzzy PI controllers based on gain/phase margin specifications and ITAE index , 1996 .

[10]  R. Rubinstein A Stochastic Minimum Cross-Entropy Method for Combinatorial Optimization and Rare-event Estimation* , 2005 .

[11]  Yujia Wang,et al.  Particle swarm optimization with preference order ranking for multi-objective optimization , 2009, Inf. Sci..

[12]  J. Reed,et al.  Simulation of biological evolution and machine learning. I. Selection of self-reproducing numeric patterns by data processing machines, effects of hereditary control, mutation type and crossing. , 1967, Journal of theoretical biology.

[13]  Dirk P. Kroese,et al.  The Cross Entropy Method: A Unified Approach To Combinatorial Optimization, Monte-carlo Simulation (Information Science and Statistics) , 2004 .

[14]  Matilde Santos,et al.  Fuzzy control of the vertical acceleration of fast ferries , 2005 .

[15]  Arpita Sinha,et al.  Analytical structure and stability analysis of a fuzzy PID controller , 2008, Appl. Soft Comput..

[16]  Rob A. Rutenbar,et al.  Simulated annealing algorithms: an overview , 1989, IEEE Circuits and Devices Magazine.

[17]  Max Felser,et al.  Real-Time Ethernet - Industry Prospective , 2005, Proceedings of the IEEE.

[18]  Dirk P. Kroese,et al.  Application of the cross-entropy method to clustering and vector quantization , 2007, J. Glob. Optim..

[19]  Rodolfo E. Haber Guerra,et al.  Using circle criteria for verifying asymptotic stability in PI-like fuzzy control systems: application to the milling process , 2003 .

[20]  Javier Echanobe,et al.  An adaptive neuro-fuzzy system for efficient implementations , 2008, Inf. Sci..

[21]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[22]  Kuhn-Il Lee,et al.  A real-time self-tuning fuzzy controller through scaling factor adjustment for the steam generator of NPP , 1995, Fuzzy Sets Syst..

[23]  Tsu-Chin Tsao,et al.  Torque control for a form tool drilling operation , 1999, IEEE Trans. Control. Syst. Technol..

[24]  Lotfi A. Zadeh,et al.  Is there a need for fuzzy logic? , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[25]  Sunan Wang,et al.  Self-organizing genetic algorithm based tuning of PID controllers , 2009, Inf. Sci..

[26]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[27]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[28]  John H. Holland,et al.  Outline for a Logical Theory of Adaptive Systems , 1962, JACM.

[29]  Li-Xin Wang Stable and optimal fuzzy control of linear systems , 1998, IEEE Trans. Fuzzy Syst..

[30]  D. E. Goldberg,et al.  Genetic Algorithms in Search, Optimization & Machine Learning , 1989 .

[31]  Stefan Preitl,et al.  Stability analysis and development of a class of fuzzy control systems , 2000 .

[32]  Witold Pedrycz,et al.  A survey of defuzzification strategies , 2001, Int. J. Intell. Syst..

[33]  Dianhui Wang,et al.  On regularizing singular systems by decentralized output feedback , 1999, IEEE Trans. Autom. Control..

[34]  Ebrahim H. Mamdani,et al.  An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller , 1999, Int. J. Hum. Comput. Stud..

[35]  Francisco Herrera,et al.  Applicability of the fuzzy operators in the design of fuzzy logic controllers , 1997, Fuzzy Sets Syst..

[36]  David E. Goldberg,et al.  Control system optimization using genetic algorithms , 1992 .

[37]  Rodolfo E. Haber,et al.  An optimal fuzzy control system in a network environment based on simulated annealing. An application to a drilling process , 2009, Appl. Soft Comput..

[38]  Dirk P. Kroese,et al.  Convergence properties of the cross-entropy method for discrete optimization , 2007, Oper. Res. Lett..

[39]  Rodolfo E. Haber,et al.  A classic solution for the control of a high-performance drilling process , 2007 .

[40]  George K. I. Mann,et al.  Adaptive hierarchical tuning of fuzzy controllers , 2002, Expert Syst. J. Knowl. Eng..

[41]  Chin-Teng Lin,et al.  Discrete-time optimal fuzzy controller design: global concept approach , 2002, IEEE Trans. Fuzzy Syst..

[42]  M. Maeda,et al.  A self-tuning fuzzy controller , 1992 .

[43]  Steven Y. Liang,et al.  Machining Process Monitoring and Control: The State–of–the–Art , 2002 .

[44]  Emmanuel G. Collins,et al.  Fuzzy PI control design for an industrial weigh belt feeder , 2003, IEEE Trans. Fuzzy Syst..

[45]  G C Kember,et al.  Online optimization of fuzzy-PID control of a thermal process. , 2005, ISA transactions.

[46]  Suk Lee,et al.  Remote Fuzzy Logic Control of Networked Control System Via Profibus-DP , 2002 .

[47]  Kit Yan Chan,et al.  Modeling manufacturing processes using a genetic programming-based fuzzy regression with detection of outliers , 2010, Inf. Sci..

[48]  T. Munakata,et al.  Temperature control for simulated annealing. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Dirk P. Kroese,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation and Machine Learning , 2004 .

[50]  Lih-Yuan Deng,et al.  The Cross-Entropy Method: A Unified Approach to Combinatorial Optimization, Monte-Carlo Simulation, and Machine Learning , 2006, Technometrics.

[51]  Masayoshi Tomizuka,et al.  Intelligent Modeling of Thrust Force in Drilling Process , 2006 .

[52]  Han-Xiong Li A comparative design and tuning for conventional fuzzy control , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[53]  Ebrahim H. Mamdani,et al.  A linguistic self-organizing process controller , 1979, Autom..

[54]  Ronald R. Yager,et al.  Essentials of fuzzy modeling and control , 1994 .

[55]  David E. Goldberg,et al.  Genetic and evolutionary algorithms come of age , 1994, CACM.

[56]  Robert Babuska,et al.  Perspectives of fuzzy systems and control , 2005, Fuzzy Sets Syst..

[57]  Qinglin Guo,et al.  A novel approach for multi-agent-based Intelligent Manufacturing System , 2009, Inf. Sci..