Dependent Coordinates and Related Constraint Equations

In either the kinematic or dynamic analysis of multibody systems described in Chapter 1, the first issue to consider is that of modeling the system, which involves the selection of a set of parameters or coordinates that will allow one to define unequivocally at all times the position, velocity and acceleration of the multibody system. There are several ways to solve this problem, and different authors have opted for one way or another depending on their preferences or the peculiarities of their own formulation.

[1]  J. Wittenburg,et al.  Dynamics of systems of rigid bodies , 1977 .

[2]  E. Haug Computer Aided Analysis and Optimization of Mechanical System Dynamics , 1984 .

[3]  J. García de Jalón,et al.  Natural coordinates for the computer analysis of multibody systems , 1986 .

[4]  J. G. Jalón,et al.  A comparative study on some different formulations of the dynamic equations of constrained mechanical systems , 1987 .

[5]  Yu. A. Gur'yan,et al.  Parts I and II , 1982 .

[6]  M. A. Chace,et al.  A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part 1 , 1977 .

[7]  J. G. Jalón,et al.  Dynamic Analysis of Three-Dimensional Mechanisms in “Natural” Coordinates , 1987 .

[8]  Ferdinand Freudenstein,et al.  Kinematic Synthesis of Linkages , 1965 .

[9]  Jan B. Jonker,et al.  Dynamics of Flexible Mechanisms , 1984 .

[10]  M. A. Serna,et al.  Dynamic analysis of plane mechanisms with lower pairs in basic coordinates , 1982 .

[11]  W. Jerkovsky The Structure of Multibody Dynamics Equations , 1978 .

[12]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[13]  B. Paul,et al.  Computer Analysis of Machines With Planar Motion: Part 1—Kinematics , 1970 .

[14]  Milton A. Chace,et al.  The Automatic Generation of a Mathematical Model for Machinery Systems , 1973 .

[15]  M. A. Serna,et al.  Computer method for kinematic analysis of lower-pair mechanisms—I velocities and accelerations , 1981 .

[16]  S. S. Kim,et al.  A General and Efficient Method for Dynamic Analysis of Mechanical Systems Using Velocity Transformations , 1986 .

[17]  R. Huston,et al.  Dynamics of Multirigid-Body Systems , 1978 .

[18]  Parviz E. Nikravesh,et al.  Computer-aided analysis of mechanical systems , 1988 .

[19]  S. S. Kim,et al.  QR Decomposition for State Space Representation of Constrained Mechanical Dynamic Systems , 1986 .

[20]  J. Argyris An excursion into large rotations , 1982 .

[21]  Parviz E. Nikravesh,et al.  Euler Parameters in Computational Kinematics and Dynamics. Part 1 , 1985 .

[22]  J. J. Uicker,et al.  IMP (Integrated Mechanisms Program), A Computer-Aided Design Analysis System for Mechanisms and Linkage , 1972 .