An Eulerian shell formulation for fluid-structure interaction

Abstract Coupled Eulerian—Lagrangian formulations are currently used to analyze fluid—structure interactions. Extending these formulations to handle large structureal deformations, structural failure, and perforation is challenging. An Eulerian structural formulation is attractive because it permits arbitrarily large deformations and permits the new surfaces associated with perforation to evolve without specialized algorithms. The theoretical basis for an Eulerian formulation for shells is developed and, in particular, the choice of a formulation for the rotations is discussed. Example calculations with large deformations, shell thinning, and weld failure are presented.

[1]  J. Gillis,et al.  Methods in Computational Physics , 1964 .

[2]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[3]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[4]  J. Brackbill,et al.  A continuum method for modeling surface tension , 1992 .

[5]  J. O. Hallquist,et al.  Recent developments in large-scale finite-element Lagrangian hydrocode technology. [Dyna 20/dyna 30 computer code] , 1981 .

[6]  Thomas J. R. Hughes,et al.  Nonlinear Dynamic Finite Element Analysis of Shells , 1981 .

[7]  D. Benson A mixture theory for contact in multi-material Eulerian formulations , 1997 .

[8]  D. Benson Computational methods in Lagrangian and Eulerian hydrocodes , 1992 .

[9]  Thomas J. R. Hughes,et al.  Nonlinear finite element analysis of shells: Part I. three-dimensional shells , 1981 .

[10]  David J. Benson,et al.  Stable time step estimation for multi-material Eulerian hydrocodes , 1998 .

[11]  Jerry I. Lin,et al.  Explicit algorithms for the nonlinear dynamics of shells , 1984 .

[12]  L YoungsD,et al.  Time-dependent multi-material flow with large fluid distortion. , 1982 .

[13]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[14]  D. Benson A multi-material Eulerian formulation for the efficient solution of impact and penetration problems , 1995 .

[15]  J. Marsden,et al.  Product formulas and numerical algorithms , 1978 .

[16]  W. Wunderlich Nonlinear Finite Element Analysis in Structural Mechanics , 1981 .

[17]  T. Belytschko,et al.  A uniform strain hexahedron and quadrilateral with orthogonal hourglass control , 1981 .

[18]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[19]  David W. Murray,et al.  Nonlinear Finite Element Analysis of Steel Frames , 1983 .

[20]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[21]  David J. Benson,et al.  Eulerian finite element methods for the micromechanics of heterogeneous materials: Dynamic prioritization of material interfaces , 1998 .

[22]  G. R. Johnson,et al.  User Instructions for the EPIC-3 Code. , 1986 .