Correlation-feedback technique in optical flow determination

In this correspondence, we present a new algorithm to determine optical flow that utilizes a correlation-feedback technique. Several experiments are presented to demonstrate that our method performs generally better than some standard correlation and gradient-based methods in terms of accuracy.

[1]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[2]  Richard Szeliski,et al.  A parallel feature tracker for extended image sequences , 1995, Proceedings of International Symposium on Computer Vision - ISCV.

[3]  P. J. Burt,et al.  The Pyramid as a Structure for Efficient Computation , 1984 .

[4]  Eric Dubois,et al.  Bayesian Estimation of Motion Vector Fields , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[6]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[7]  HANS-HELLMUT NAGEL,et al.  On a Constraint Equation for the Estimation of Displacement Rates in Image Sequences , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Ajit Singh,et al.  An estimation-theoretic framework for image-flow computation , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[10]  Jingning Pan Motion estimation using optical flow field , 1994 .