Progress towards photon counting between 1μm and 1.6μm using silicon with infrared absorbers

Silicon based avalanche photodiodes (APDs) have exhibited impressive performance over the visible spectrum for more than a decade. Photon counting with these devices has progressed to the level where room-temperature operation and low dark count rates (< 100 Hz) are commonplace. Several commercial enterprises have been established to capitalise on these devices and many niche markets are now serviced by incorporating these devices into suitable systems. This paper describes one approach that allows the performance of silicon based Geigermode avalanche photodiodes (GM-APDs) to be extended into the near-infra-red. The process development is described whereby Ge absorbers are incorporated into adapted silicon APD designs to provide separate absorption and multiplication devices. Simulation results are presented outlining the performance of these devices at wavelengths between 1 μm and 1.6 μm. The performance results from silicon APD designs are presented for visible wavelengths. A silicon-germanium bonding process is described and the challenges presented in developing the hybrid absorber/multiplier structure are detailed. Finally, a summary of appropriate custom application integrated circuits for various applications is discussed.

[1]  Simon Verghese,et al.  Afterpulsing in Geiger-mode avalanche photodiodes for 1.06μm wavelength , 2006 .

[2]  Eugene A. Fitzgerald,et al.  Strained Si, SiGe, and Ge on-insulator: review of wafer bonding fabrication techniques , 2004 .

[3]  Brendan O'Flynn,et al.  Miniature gain and bias control circuit for avalanche photodiodes , 2007 .

[4]  Alan P. Morrison,et al.  Hybrid integration of a CMOS active quench and reset circuit for a geiger-mode avalanche photodiode , 2006, SPIE OPTO.

[5]  John R. Tower,et al.  InP-based Geiger-mode avalanche photodiode arrays for three-dimensional imaging at 1.06 μm , 2009, Defense + Commercial Sensing.

[6]  S. Esener,et al.  Analysis of Hot-Carrier Luminescence for Infrared Single-Photon Upconversion and Readout , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[7]  Mark A. Itzler,et al.  High-performance Single Photon Avalanche Diodes for QKD Networks , 2008 .

[8]  Andrea L. Lacaita,et al.  All-silicon avalanche photodiode sensitive at 1.3 mu m with picosecond time resolution , 1992 .

[9]  M. Ghioni,et al.  Avalanche diodes and circuits for infrared photon counting and timing: retrospect and prospect , 2006, 2006 Digest of the LEOS Summer Topical Meetings.

[10]  Q. Tong,et al.  Transfer of semiconductor and oxide films by wafer bonding and layer cutting , 2000 .

[11]  Felix Ejeckam,et al.  Wafer bonding technology and its applications in optoelectronic devices and materials , 1997 .

[12]  Joe C. Campbell,et al.  High-Performance InGaAs/InP Single-Photon Avalanche Photodiode , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[13]  Frederick J. O'Donnell,et al.  Scaling of dark count rate with active area in 1.06μm photon-counting InGaAsP∕InP avalanche photodiodes , 2006 .

[14]  D. Cronin,et al.  Intelligent System for Optimal Hold-Off Time Selection in an Active Quench and Reset IC , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[15]  D. Shaver,et al.  Arrays of InP-based Avalanche Photodiodes for Photon Counting , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  Xudong Jiang,et al.  Geiger-Mode Avalanche Photodiodes for Near-Infrared Photon Counting , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[17]  Philippe Regreny,et al.  III-V/Si photonics by die-to-wafer bonding , 2007 .

[18]  M.K. Emsley,et al.  High speed resonant-cavity enhanced Ge photodetectors on reflecting Si substrates for 1550 nm operation , 2004, The 17th Annual Meeting of the IEEELasers and Electro-Optics Society, 2004. LEOS 2004..

[19]  Xudong Jiang,et al.  InGaAsP–InP Avalanche Photodiodes for Single Photon Detection , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  Alberto Tosi,et al.  Single photon avalanche diodes for 1.5 µm photon counting applications , 2005 .

[21]  Xudong Jiang,et al.  Negative feedback avalanche diodes for near-infrared single-photon detection , 2009, Defense + Commercial Sensing.

[22]  Xiaoli Sun,et al.  Afterpulsing Effects in Free-Running InGaAsP Single-Photon Avalanche Diodes , 2008, IEEE Journal of Quantum Electronics.

[23]  Robert J. Bailey,et al.  Geiger-mode avalanche photodiodes at 2μm wavelength , 2007 .

[24]  Xudong Jiang,et al.  Geiger-Mode APD Single Photon Detectors , 2008, OFC/NFOEC 2008 - 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference.

[25]  J. Bowers,et al.  Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain-bandwidth product , 2009 .

[26]  D. Shaver,et al.  InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm , 2002 .

[27]  Xiaoli Sun,et al.  InGaAsP avalanche photodetectors for non-gated 1.06 micron photon-counting receivers , 2007, SPIE Defense + Commercial Sensing.

[28]  Gianlorenzo Masini,et al.  Ge-on-Si approaches to the detection of near-infrared light , 1999 .

[29]  H. Ando,et al.  Characteristics of germanium avalanche photodiodes in the wavelength region of 1-1.6 µm , 1978, IEEE Journal of Quantum Electronics.

[30]  T. Mikawa,et al.  Germanium reachthrough avalanche photodiodes for optical communication systems at 1.55-µm wavelength region , 1984, IEEE Transactions on Electron Devices.

[31]  B. Nyman,et al.  Afterpulsing Effects in 1.5 μm Single Photon Avalanche Photodetectors , 2006, LEOS 2006 - 19th Annual Meeting of the IEEE Lasers and Electro-Optics Society.

[32]  A. Dalla Mora,et al.  InGaAs/InP single-photon avalanche diodes show low dark counts and require moderate cooling , 2009, OPTO.

[33]  P. Mages,et al.  Fused InGaAs-Si avalanche photodiodes with low-noise performances , 2002, IEEE Photonics Technology Letters.

[34]  G. Assanto,et al.  Germanium on Silicon for Near-Infrared Light Sensing , 2009, IEEE Photonics Journal.

[35]  G. M. Smith,et al.  InP-based single-photon detector arrays with asynchronous readout integrated circuits , 2008 .

[36]  Mark A. Itzler,et al.  InP-based negative feedback avalanche diodes , 2009, OPTO.

[37]  Alan Mathewson,et al.  Monolithically integrated avalanche photodiode and transimpedance amplifier in a hybrid bulk/SOI CMOS process , 2003 .

[38]  Hailin Cui,et al.  80 GHz bandwidth-gain-product Ge/Si avalanche photodetector by selective Ge growth , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[39]  O. Mikami,et al.  A low-noise n+np germanium avalanche photodiode , 1981, IEEE Journal of Quantum Electronics.

[40]  S. Cova,et al.  Monolithic active-quenching and active-reset circuit for single-photon avalanche detectors , 2003, IEEE J. Solid State Circuits.

[41]  A. Tosi,et al.  Single photon avalanche diodes (SPADs) for 1.5 μm photon counting applications , 2007 .

[42]  D. Shaver,et al.  Design Considerations for 1.06-$mu$m InGaAsP–InP Geiger-Mode Avalanche Photodiodes , 2006, IEEE Journal of Quantum Electronics.