Multiplexed Quantum Random Number Generation

Fast secure random number generation is essential for high-speed encrypted communication, and is the backbone of information security. Generation of truly random numbers depends on the intrinsic randomness of the process used and is usually limited by electronic bandwidth and signal processing data rates. Here we use a multiplexing scheme to create a fast quantum random number generator structurally tailored to encryption for distributed computing, and high bit-rate data transfer. We use vacuum fluctuations measured by seven homodyne detectors as quantum randomness sources, multiplexed using a single integrated optical device. We obtain a random number generation rate of 3.08 Gbit/s, from only 27.5 MHz of sampled detector bandwidth. Furthermore, we take advantage of the multiplexed nature of our system to demonstrate an unseeded strong extractor with a generation rate of 26 Mbit/s.

[1]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[2]  Damien Bonneau,et al.  Silicon Quantum Photonics , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[3]  Stefan Nolte,et al.  On-chip generation of high-order single-photon W-states , 2014, Nature Photonics.

[4]  Jan Bouda,et al.  Improving the Hadamard extractor , 2012, Theor. Comput. Sci..

[5]  John Kelsey,et al.  Recommendation for the Entropy Sources Used for Random Bit Generation , 2018 .

[6]  E. Jeffrey,et al.  Photon arrival time quantum random number generation , 2009 .

[7]  M. Lobino,et al.  Anisotropic model for the fabrication of annealed and reverse proton exchanged waveguides in congruent lithium niobate. , 2014, Optics express.

[8]  R. Dong,et al.  A generator for unique quantum random numbers based on vacuum states , 2010 .

[9]  Broderick Crawford,et al.  Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) , 2007 .

[10]  Qiang Zhang,et al.  Experimental measurement-device-independent quantum random number generation , 2016, ArXiv.

[11]  David Evans,et al.  Reverse-Engineering a Cryptographic RFID Tag , 2008, USENIX Security Symposium.

[12]  V. Altuzar,et al.  Atmospheric pollution profiles in Mexico City in two different seasons , 2003 .

[13]  Yuta Terashima,et al.  Real-time fast physical random number generator with a photonic integrated circuit. , 2017, Optics express.

[14]  Hao Liang,et al.  Fully integrated 3.2 Gbps quantum random number generator with real-time extraction , 2016, ArXiv.

[15]  Julia Kempe,et al.  Two-Source Extractors Secure Against Quantum Adversaries , 2010, Theory Comput..

[16]  James F. Dynes,et al.  Long-Term Test of a Fast and Compact Quantum Random Number Generator , 2018, Journal of Lightwave Technology.

[17]  Willis H. Ware,et al.  Security and privacy in computer systems , 1899, AFIPS '67 (Spring).

[18]  Cristian S. Calude,et al.  Strong Kochen-Specker theorem and incomputability of quantum randomness , 2012, Physical Review A.

[19]  Atsushi Uchida,et al.  Tb/s physical random bit generation with bandwidth-enhanced chaos in three-cascaded semiconductor lasers. , 2015, Optics express.

[20]  T. Symul,et al.  Maximization of Extractable Randomness in a Quantum Random-Number Generator , 2014, 1411.4512.

[21]  L. Tian,et al.  Practical quantum random number generator based on measuring the shot noise of vacuum states , 2010 .

[22]  Xiongfeng Ma,et al.  Ultrafast quantum random number generation based on quantum phase fluctuations. , 2011, Optics express.

[23]  Zhu Cao,et al.  Quantum random number generation , 2015, npj Quantum Information.

[24]  Miguel Herrero-Collantes,et al.  Quantum random number generators , 2016, 1604.03304.

[25]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[26]  Andreas Wallraff,et al.  Realization of a Quantum Random Generator Certified with the Kochen-Specker Theorem. , 2017, Physical review letters.

[27]  Xiongfeng Ma,et al.  High speed device-independent quantum random number generation without detection loophole , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[28]  Hugo Zbinden,et al.  Self-testing quantum random number generator. , 2014, Physical review letters.

[29]  A. I. Lvovsky,et al.  Versatile wideband balanced detector for quantum optical homodyne tomography , 2011, 1111.4012.

[30]  T. Symul,et al.  Real time demonstration of high bitrate quantum random number generation with coherent laser light , 2011, 1107.4438.

[31]  Paolo Villoresi,et al.  Source-Device-Independent Ultrafast Quantum Random Number Generation. , 2015, Physical review letters.

[32]  Benny Pinkas,et al.  Cryptanalysis of the random number generator of the Windows operating system , 2009, TSEC.

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  J G Rarity,et al.  Reference-frame-independent quantum-key-distribution server with a telecom tether for an on-chip client. , 2014, Physical review letters.

[35]  Ronen Shaltiel,et al.  An Introduction to Randomness Extractors , 2011, ICALP.

[36]  Waldimar Amaya,et al.  Strong experimental guarantees in ultrafast quantum random number generation , 2015 .

[37]  Vijayalakshmi Atluri,et al.  ACM Transactions on Information and System Security: Preface , 2005 .

[38]  Morris J. Dworkin,et al.  SP 800-38B. Recommendation for Block Cipher Modes of Operation: the CMAC Mode for Authentication , 2005 .

[39]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[40]  Hsinchun Chen,et al.  Security Informatics , 2009, Security Informatics.

[41]  Alan Mink,et al.  Experimentally Generated Random Numbers Certified by the Impossibility of Superluminal Signaling , 2017, 1702.05178.

[42]  Klaus Jansen,et al.  Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques , 2012, Lecture Notes in Computer Science.

[43]  Pu Li,et al.  Random Bit Generator Using Delayed Self-Difference of Filtered Amplified Spontaneous Emission , 2014, IEEE Photonics Journal.

[44]  H Thienpont,et al.  Physical random bit generation from chaotic solitary laser diode. , 2014, Optics express.

[45]  Yuta Terashima,et al.  Recommendations and illustrations for the evaluation of photonic random number generators , 2016, 1612.04415.

[46]  Ivan Lanese,et al.  Theoretical Computer Science , 2014, Lecture Notes in Computer Science.