Couplings, gradient estimates and logarithmic Sobolev inequalitiy for Langevin bridges
暂无分享,去创建一个
[1] E. Lieb,et al. On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .
[2] Eric Vanden-Eijnden,et al. Invariant measures of stochastic partial differential equations and conditioned diffusions , 2005 .
[3] Karl-Theodor Sturm,et al. Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .
[4] J. Zambrini,et al. Symmetries in the stochastic calculus of variations , 1997 .
[5] M. Ledoux,et al. Analysis and Geometry of Markov Diffusion Operators , 2013 .
[6] M. Yor,et al. Penalising Brownian Paths , 2009 .
[7] B. Jamison. Reciprocal processes , 1974 .
[8] A. Stuart,et al. ANALYSIS OF SPDES ARISING IN PATH SAMPLING PART II: THE NONLINEAR CASE , 2006, math/0601092.
[9] B. Jamison,et al. Reciprocal Processes: The Stationary Gaussian Case , 1970 .
[10] Donald Babbitt,et al. An Initiation to Logarithmic Sobolev Inequalities , 2007 .
[11] J. Zambrini,et al. Malliavin calculus and Euclidean quantum mechanics. I. Functional calculus , 1991 .
[12] Arthur J. Krener,et al. Reciprocal diffusions and stochastic differential equations of second order , 1988 .
[13] S. Roelly,et al. Duality formula for the bridges of a Brownian diffusion: Application to gradient drifts , 2005 .
[14] A. Krener. Reciprocal diffusions in flat space , 1997 .
[15] A. Krener,et al. Dynamics and kinematics of reciprocal diffusions , 1993 .
[16] B. Jamison. The Markov processes of Schrödinger , 1975 .
[17] G. Royer,et al. Processus de diffusion associe aux mesures de Gibbs sur $$\mathbb{Z}^d $$ , 1978 .
[18] Elton P. Hsu,et al. Martingale Representation and a Simple Proof of Logarithmic Sobolev Inequalities on Path Spaces , 1997 .
[19] Hans Föllmer,et al. Random fields and diffusion processes , 1988 .
[20] E. Schrödinger. Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique , 1932 .
[21] A characterization of reciprocal processes via an integration by parts formula on the path space , 2002 .
[22] Elton P. Hsu. Logarithmic Sobolev Inequalities on Path Spaces Over Riemannian Manifolds , 1997 .
[23] A. Barbour. Stein's method for diffusion approximations , 1990 .
[24] V. Betz,et al. Feynman-Kac-Type Theorems and Gibbs Measures on Path Space: With Applications to Rigorous Quantum Field Theory , 2011 .
[25] J. L. Doob,et al. Conditional brownian motion and the boundary limits of harmonic functions , 1957 .
[26] Christian L'eonard,et al. Reciprocal processes. A measure-theoretical point of view , 2013, 1308.0576.
[27] Giovanni Conforti,et al. Approximating conditional distributions , 2017, 1710.08856.
[28] T. Lohrenz,et al. Logarithmic Sobolev Inequalities for Pinned Loop Groups , 1996 .
[29] M. Yor,et al. Continuous martingales and Brownian motion , 1990 .
[30] Giovanni Conforti. Fluctuations of bridges, reciprocal characteristics and concentration of measure , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.
[31] B. Simon. Convexity: An Analytic Viewpoint , 2011 .
[32] J. Zambrini. Variational processes and stochastic versions of mechanics , 1986 .
[33] L. Gross. Logarithmic Sobolev inequalities on loop groups , 1991 .
[34] Edward Nelson. Dynamical Theories of Brownian Motion , 1967 .
[35] J. Voss,et al. Analysis of SPDEs arising in path sampling. Part I: The Gaussian case , 2005 .
[36] I. Benjamini,et al. Conditioned Diffusions which are Brownian Bridges , 1997 .
[37] M. Thieullen. Second order stochastic differential equations and non-Gaussian reciprocal diffusions , 1993 .
[38] Christian L'eonard. A survey of the Schr\"odinger problem and some of its connections with optimal transport , 2013, 1308.0215.