Couplings, gradient estimates and logarithmic Sobolev inequalitiy for Langevin bridges

In this paper we establish quantitative results about the bridges of the Langevin dynamics and the associated reciprocal processes. They include an equivalence between gradient estimates for bridge semigroups and couplings, comparison principles, bounds of the distance between bridges of different Langevin dynamics, and a logarithmic Sobolev inequality for bridge measures. The existence of an invariant measure for the bridges is also discussed and quantitative bounds for the convergence to the invariant measure are proven. All results are based on a seemingly new expression of the drift of a bridge in terms of the reciprocal characteristic, which, roughly speaking, quantifies the “mean acceleration” of a bridge.

[1]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[2]  Eric Vanden-Eijnden,et al.  Invariant measures of stochastic partial differential equations and conditioned diffusions , 2005 .

[3]  Karl-Theodor Sturm,et al.  Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .

[4]  J. Zambrini,et al.  Symmetries in the stochastic calculus of variations , 1997 .

[5]  M. Ledoux,et al.  Analysis and Geometry of Markov Diffusion Operators , 2013 .

[6]  M. Yor,et al.  Penalising Brownian Paths , 2009 .

[7]  B. Jamison Reciprocal processes , 1974 .

[8]  A. Stuart,et al.  ANALYSIS OF SPDES ARISING IN PATH SAMPLING PART II: THE NONLINEAR CASE , 2006, math/0601092.

[9]  B. Jamison,et al.  Reciprocal Processes: The Stationary Gaussian Case , 1970 .

[10]  Donald Babbitt,et al.  An Initiation to Logarithmic Sobolev Inequalities , 2007 .

[11]  J. Zambrini,et al.  Malliavin calculus and Euclidean quantum mechanics. I. Functional calculus , 1991 .

[12]  Arthur J. Krener,et al.  Reciprocal diffusions and stochastic differential equations of second order , 1988 .

[13]  S. Roelly,et al.  Duality formula for the bridges of a Brownian diffusion: Application to gradient drifts , 2005 .

[14]  A. Krener Reciprocal diffusions in flat space , 1997 .

[15]  A. Krener,et al.  Dynamics and kinematics of reciprocal diffusions , 1993 .

[16]  B. Jamison The Markov processes of Schrödinger , 1975 .

[17]  G. Royer,et al.  Processus de diffusion associe aux mesures de Gibbs sur $$\mathbb{Z}^d $$ , 1978 .

[18]  Elton P. Hsu,et al.  Martingale Representation and a Simple Proof of Logarithmic Sobolev Inequalities on Path Spaces , 1997 .

[19]  Hans Föllmer,et al.  Random fields and diffusion processes , 1988 .

[20]  E. Schrödinger Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique , 1932 .

[21]  A characterization of reciprocal processes via an integration by parts formula on the path space , 2002 .

[22]  Elton P. Hsu Logarithmic Sobolev Inequalities on Path Spaces Over Riemannian Manifolds , 1997 .

[23]  A. Barbour Stein's method for diffusion approximations , 1990 .

[24]  V. Betz,et al.  Feynman-Kac-Type Theorems and Gibbs Measures on Path Space: With Applications to Rigorous Quantum Field Theory , 2011 .

[25]  J. L. Doob,et al.  Conditional brownian motion and the boundary limits of harmonic functions , 1957 .

[26]  Christian L'eonard,et al.  Reciprocal processes. A measure-theoretical point of view , 2013, 1308.0576.

[27]  Giovanni Conforti,et al.  Approximating conditional distributions , 2017, 1710.08856.

[28]  T. Lohrenz,et al.  Logarithmic Sobolev Inequalities for Pinned Loop Groups , 1996 .

[29]  M. Yor,et al.  Continuous martingales and Brownian motion , 1990 .

[30]  Giovanni Conforti Fluctuations of bridges, reciprocal characteristics and concentration of measure , 2016, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques.

[31]  B. Simon Convexity: An Analytic Viewpoint , 2011 .

[32]  J. Zambrini Variational processes and stochastic versions of mechanics , 1986 .

[33]  L. Gross Logarithmic Sobolev inequalities on loop groups , 1991 .

[34]  Edward Nelson Dynamical Theories of Brownian Motion , 1967 .

[35]  J. Voss,et al.  Analysis of SPDEs arising in path sampling. Part I: The Gaussian case , 2005 .

[36]  I. Benjamini,et al.  Conditioned Diffusions which are Brownian Bridges , 1997 .

[37]  M. Thieullen Second order stochastic differential equations and non-Gaussian reciprocal diffusions , 1993 .

[38]  Christian L'eonard A survey of the Schr\"odinger problem and some of its connections with optimal transport , 2013, 1308.0215.