An area-time efficient FPGA-implementation of online finite-set model based predictive controllers for flying capacitor inverters

Recently there has been an increase in the use of model-based predictive control (MBPC) for power-electronic converters. Especially for flying-capacitor multilevel converters (FCC) this offers an interesting possibility to simultaneously control output current and the capacitor voltages. The computational burden however is very high and often restrictive for a good implementation. In this paper a time and resource efficient design methodology is presented for the FPGA implementation of FCC MBPC. The control is fully implemented in programmable digital logic. Due to a parallel processing for the three converter phases and a fully pipelined calculation of the prediction stage an area-time efficient implementation is realized. Furthermore, this is achieved by using a high-level design tool. The implementation aspects for 3, 4 and 5-level FC inverters are discussed, with a focus on the 4-level case.