Corneal Trephination With the Femtosecond Laser

Purpose: To evaluate the feasibility and cut quality of corneal trephination in human donor corneal tissue with the femtosecond laser. Methods: Twelve human corneoscleral discs were inserted in an artificial anterior chamber. After corneal thickness measurement and tonometry, the cornea was mounted on a femtosecond laser (FEMTEC; 20/10 Perfect Vision, Heidelberg, Germany) through a contact lens (patient interface). Trephination was performed with diameters of 7.0, 7.5, 8.0, and 8.5 mm in 3 corneas each. The corneal button was removed from the corneoscleral disc in 2 of the 3 corneas in each case. The cut was not manipulated in the remaining corneas to enable histologic detection of possible tissue bridges. The cut edges were macroscopically and light-microscopically examined for quality. Results: Corneal buttons and corneoscleral discs could be separated by blunt dissection in all cases. Tissue bridges were more common in thicker edematous corneas than in thinner ones. Both the macro- and microscopic examination disclosed smooth rectilinear cut margins with a perpendicular cut edge. Conclusion: This feasibility study shows that the femtosecond laser enables sufficient trephination of human donor corneas.

[1]  B. Seitz,et al.  [The penetrating keratoplasty. A 100-year success story]. , 2005, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[2]  B. Seitz,et al.  Die perforierende Keratoplastik , 2005, Der Ophthalmologe.

[3]  Zsolt Bor,et al.  Randomized prospective clinical study comparing induced aberrations with IntraLase and Hansatome flap creation in fellow eyes: Potential impact on wavefront‐guided laser in situ keratomileusis , 2005, Journal of cataract and refractive surgery.

[4]  B. Seitz,et al.  Inverse mushroom-shaped nonmechanical penetrating keratoplasty using a femtosecond laser. , 2004, American journal of ophthalmology.

[5]  T. Juhász,et al.  Femtosecond laser-assisted posterior lamellar keratoplasty: initial studies of surgical technique in eye bank eyes. , 2005, Ophthalmology.

[6]  D. Lin,et al.  Macular hemorrhage after laser in situ keratomileusis (LASIK) with femtosecond laser flap creation. , 2004, American journal of ophthalmology.

[7]  J. Jonas,et al.  Femtosecond laser penetrating keratoplasty with conical incisions and positional spikes. , 2004, Journal of refractive surgery.

[8]  B. Seitz,et al.  [Results of the first 1,000 consecutive elective nonmechanical keratoplasties using the excimer laser. A prospective study over more than 12 years]. , 2004, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[9]  B. Seitz,et al.  Ergebnisse der ersten 1.000 konsekutiven elektiven nichtmechanischen Keratoplastiken mit dem Excimerlaser , 2004, Der Ophthalmologe.

[10]  J. Jonas Intrastromal lamellar femtosecond laser keratoplasty with superficial flap , 2003, The British journal of ophthalmology.

[11]  Achim Langenbucher,et al.  Nonmechanical posterior lamellar keratoplasty using the femtosecond laser (femto-plak) for corneal endothelial decompensation. , 2003, American journal of ophthalmology.

[12]  R. Krueger,et al.  First clinical results with the femtosecond neodynium-glass laser in refractive surgery. , 2003, Journal of refractive surgery.

[13]  Tibor Juhasz,et al.  Femtosecond laser flap creation for laser in situ keratomileusis: six-month follow-up of initial U.S. clinical series. , 2003, Journal of refractive surgery.

[14]  Alan Sugar,et al.  Ultrafast (femtosecond) laser refractive surgery. , 2002, Current opinion in ophthalmology.

[15]  H. Welling,et al.  Application of ultrashort laser pulses for intrastromal refractive surgery , 2000, Graefe's Archive for Clinical and Experimental Ophthalmology.

[16]  T. Juhász,et al.  An in vivo model of femtosecond laser intrastromal refractive surgery. , 1999, Ophthalmic surgery and lasers.

[17]  A. Behrens,et al.  “Orientation teeth” in non-mechanical laser corneal trephination for penetrating keratoplasty: 2.94 μm Er:YAGv 193 nm ArF excimer laser , 1999, The British journal of ophthalmology.

[18]  B. Seitz,et al.  Nonmechanical corneal trephination with the excimer laser improves outcome after penetrating keratoplasty. , 1999, Ophthalmology.

[19]  G. Naumann The Bowman Lecture , 1995, Eye.

[20]  R C Troutman,et al.  Astigmatism after penetrating keratoplasty using the Krumeich guided trephine system. , 1993, Refractive & corneal surgery.

[21]  G. Lang,et al.  [Configuration of corneal incisions with the excimer laser: an experimental study]. , 1989, Fortschritte der Ophthalmologie : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[22]  G. Waring,et al.  Configuration of corneal trephine opening using five different trephines in human donor eyes. , 1988, Archives of ophthalmology.

[23]  E. Perlman,et al.  An analysis and interpretation of refractive errors after penetrating keratoplasty. , 1981, Ophthalmology.

[24]  A. E. Maumenee,et al.  Refractive errors following keratoplasty. , 1974, Transactions of the American Ophthalmological Society.