Parallel Distributed Solvers for Large Stable Generalized Lyapunov Equations

In this paper we study the solution of stable generalized Lyapunov matrix equations with large-scale, dense coefficient matrices. Our iterative algorithms, based on the matrix sign function, only require scalable matrix algebra kernels which are highly efficient on parallel distributed architectures. This approach avoids therefore the difficult parallelization of direct methods based on the QZ algorithm. The experimental analtsis reports a remarkable performance of our solvers on an IBM SP2 platform.

[1]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[2]  Thilo Penzl,et al.  Numerical solution of generalized Lyapunov equations , 1998, Adv. Comput. Math..

[3]  James Demmel,et al.  The Spectral Decomposition of Nonsymmetric Matrices on Distributed Memory Parallel Computers , 1997, SIAM J. Sci. Comput..

[4]  David S. Watkins,et al.  Chasing algorithms for the eigenvalues problem , 1991 .

[5]  Jack Dongarra,et al.  ScaLAPACK Users' Guide , 1987 .

[6]  Jack J. Dongarra,et al.  Implementation of some concurrent algorithms for matrix factorization , 1986, Parallel Comput..

[7]  R. Byers Solving the algebraic Riccati equation with the matrix sign function , 1987 .

[8]  Judith Gardiner,et al.  A generalization of the matrix sign function solution for algebraic Riccati equations , 1985, 1985 24th IEEE Conference on Decision and Control.

[9]  Vasile Sima,et al.  Algorithms for Linear-Quadratic Optimization , 2021 .

[10]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[11]  V. Mehrmann The Autonomous Linear Quadratic Control Problem: Theory and Numerical Solution , 1991 .

[12]  Alan J. Laub,et al.  Solution of the Sylvester matrix equation AXBT + CXDT = E , 1992, TOMS.

[13]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[14]  A. J. Laub,et al.  Hypercube implementation of some parallel algorithms in control , 1988 .

[15]  Robert A. van de Geijn,et al.  Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem: Myths and Reality , 1996, SIAM J. Sci. Comput..

[16]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[17]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[18]  Harald K. Wimmer,et al.  On the algebraic Riccati equation , 1976, Bulletin of the Australian Mathematical Society.

[19]  R. Y. Chiang,et al.  Model Reduction for Robust Control: A Schur Relative-Error Method , 1988, 1988 American Control Conference.

[20]  A. Varga On stabilization methods of descriptor systems , 1995 .

[21]  Kameshwar Poolla,et al.  Parallel Solution of Large Lyapunov Equations* , 2022 .

[22]  David S. Watkins Bidirectional chasing algorithms for the eigenvalue problem , 1993 .

[23]  I. Rosen,et al.  A multilevel technique for the approximate solution of operator Lyapunov and algebraic Riccati equations , 1995 .

[24]  Andras Varga,et al.  Computation of J-innerouter factorizations of rational matrices , 1998 .