On super 2-restricted and 3-restricted edge-connected vertex transitive graphs

Let G=(V(G),E(G)) be a simple connected graph and [email protected]?E(G). An edge set F is an m-restricted edge cut if G-F is disconnected and each component of G-F contains at least m vertices. Let @l^(^m^)(G) be the minimum size of all m-restricted edge cuts and @x"m(G)=min{|@w(U)|:|U|=m and G[U] is connected}, where @w(U) is the set of edges with exactly one end vertex in U and G[U] is the subgraph of G induced by U. A graph G is [email protected]^(^m^) if @l^(^m^)(G)[email protected]"m(G). An [email protected]^(^m^) graph is called super m-restricted edge-connected if every minimum m-restricted edge cut is @w(U) for some vertex set U with |U|=m and G[U] being connected. In this note, we give a characterization of super 2-restricted edge-connected vertex transitive graphs and obtain a sharp sufficient condition for an [email protected]^(^3^) vertex transitive graph to be super 3-restricted edge-connected. In particular, a complete characterization for an [email protected]^(^2^) minimal Cayley graph to be super 2-restricted edge-connected is obtained.

[1]  Miguel Angel Fiol,et al.  Extraconnectivity of graphs with large girth , 1994, Discret. Math..

[2]  L. Lovász Combinatorial problems and exercises , 1979 .

[3]  M. Watkins Connectivity of transitive graphs , 1970 .

[4]  A. Rényii,et al.  ON A PROBLEM OF GRAPH THEORY , 1966 .

[5]  Qiao Li,et al.  Conditional edge connectivity properties, reliability comparisons and transitivity of graphs , 2002, Discret. Math..

[6]  Jun-Ming Xu,et al.  On restricted edge-connectivity of graphs , 2002, Discret. Math..

[7]  Junming Xu,et al.  Theory and Application of Graphs , 2003, Network Theory and Applications.

[8]  Qiao Li,et al.  Super edge connectivity properties of connected edge symmetric graphs , 1999, Networks.

[9]  Angelika Hellwig,et al.  Maximally edge-connected and vertex-connected graphs and digraphs: A survey , 2008, Discret. Math..

[10]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[11]  I. Reiman Über ein Problem von K. Zarankiewicz , 1958 .

[12]  D. Du,et al.  Combinatorial Network Theory , 1996 .

[13]  Shahram Latifi,et al.  Conditional Connectivity Measures for Large Multiprocessor Systems , 1994, IEEE Trans. Computers.

[14]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[15]  Zhao Zhang,et al.  On optimally-lambda(3) transitive graphs , 2006, Discret. Appl. Math..

[16]  S. Lakshmivarahan,et al.  Symmetry in Interconnection Networks Based on Cayley Graphs of Permutation Groups: A Survey , 1993, Parallel Comput..

[17]  Ying Qian Wang,et al.  Super restricted edge-connectivity of vertex-transitive graphs , 2004, Discret. Math..

[18]  W. Mader,et al.  Minimalen-fach kantenzusammenhängende Graphen , 1971 .

[19]  W. Mader Minimale n-fach kantenzusammenh angende graphen , 1971 .

[20]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[21]  Qiaoliang Li,et al.  Super edge connectivity properties of connected edge symmetric graphs , 1999, Networks.

[22]  Zoltán Füredi,et al.  Graphs without quadrilaterals , 1983, J. Comb. Theory, Ser. B.

[23]  Zhao Zhang,et al.  A proof of an inequality concerning k-restricted edge connectivity , 2005, Discret. Math..

[24]  Jixiang Meng Optimally super-edge-connected transitive graphs , 2003, Discret. Math..