One of the main experimental setups for EUV lithography is the ASML EUV Alpha-Demo Tool (ADT), which achieves the first full-field EUV exposures at a wavelength of 13.6nm and a numerical aperture of 0.25. We report on the assessment of the baseline imaging performance of the ADT installed at IMEC, and review the work done in relation to EUV reticles and resists. For the basic imaging performance of the ADT, we have studied 40 LS patterns through dose and focus and at multiple slit positions, to extract exposure latitude and depth of focus. Measurements of reticle CD vs. wafer CD were done to determine the Mask Error Enhancement Factor (MEEF) for dense features. We also discuss the uniformity of the different features across the field, and the factors that influence it. The progress in EUV resist performance has been tracked by screening new materials on the EUV ADT. Promising resist materials have been tested on the ASML ADT and have demonstrated sub 32nm Line/Space and 34nm dense contact hole resolution. One of the main topics related to EUV reticles is reticle defectivity along with reticle defect printability. We have experimentally measured the number of wafer defects that repeat from die-to-die after reticle exposure on the ADT. To examine the wafer signature of the repeating defects, a SEM-based defect review is then conducted. We have used rigorous simulations to show that the defect signature on wafer can correspond to a relatively large ML defect, which can print as a hollow feature.