High order approximation to non-smooth multivariate functions
暂无分享,去创建一个
[1] Dmitry Batenkov,et al. AN "ALGEBRAIC" RECONSTRUCTION OF PIECEWISE-SMOOTH FUNCTIONS FROM INTEGRAL MEASUREMENTS , 2009, 0901.4659.
[2] Ronald Fedkiw,et al. Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.
[3] Anil K. Jain,et al. Data clustering: a review , 1999, CSUR.
[4] David Levin,et al. Approximating piecewise-smooth functions , 2010 .
[5] C. Markakis,et al. High-order difference and pseudospectral methods for discontinuous problems , 2014, 1406.4865.
[6] Dongbin Xiu,et al. Discontinuity detection in multivariate space for stochastic simulations , 2009, J. Comput. Phys..
[7] M. Urner. Scattered Data Approximation , 2016 .
[8] Dmitry Batenkov,et al. Algebraic Fourier reconstruction of piecewise smooth functions , 2010, Math. Comput..
[9] Klaus Höllig,et al. B-splines from parallelepipeds , 1982 .
[10] David Levin,et al. The approximation power of moving least-squares , 1998, Math. Comput..
[11] Rick Archibald,et al. Determining the locations and discontinuities in the derivatives of functions , 2008 .
[12] K. Salkauskas,et al. Moving least-squares are Backus-Gilbert optimal , 1989 .
[13] Grzegorz W. Wasilkowski,et al. An Adaptive Algorithm for Weighted Approximation of Singular Functions over R , 2013, SIAM J. Numer. Anal..
[14] Nira Dyn,et al. Interpolation and Approximation of Piecewise Smooth Functions , 2005, SIAM J. Numer. Anal..
[15] A. Harten. ENO schemes with subcell resolution , 1989 .
[16] Dmitry Batenkov,et al. Complete algebraic reconstruction of piecewise-smooth functions from Fourier data , 2012, Math. Comput..
[17] Grzegorz W. Wasilkowski,et al. The power of adaptive algorithms for functions with singularities , 2009 .