Guided local search and its application to the traveling salesman problem

Abstract The Traveling Salesman Problem (TSP) is one of the most famous problems in combinatorial optimization. In this paper, we are going to examine how the techniques of Guided Local Search (GLS) and Fast Local Search (FLS) can be applied to the problem. GLS sits on top of local search heuristics and has as a main aim to guide these procedures in exploring efficiently and effectively the vast search spaces of combinatorial optimization problems. GLS can be combined with the neighborhood reduction scheme of FLS which significantly speeds up the operations of the algorithm. The combination of GLS and FLS with TSP local search heuristics of different eiciency and effectiveness is studied in an effort to determine the dependence of GLS on the underlying local search heuristic used. Comparisons are made with some of the best TSP heuristic algorithms and general optimization techniques which demonstrate the advantages of GLS over alternative heuristic approaches suggested for the problem.

[1]  David Connolly An improved annealing scheme for the QAP , 1990 .

[2]  F. Glover,et al.  In Modern Heuristic Techniques for Combinatorial Problems , 1993 .

[3]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[4]  Edward P. K. Tsang,et al.  Fast local search and guided local search and their application to British Telecom's workforce scheduling problem , 1997, Oper. Res. Lett..

[5]  Olivier C. Martin,et al.  Combining simulated annealing with local search heuristics , 1993, Ann. Oper. Res..

[6]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part I, Graph Partitioning , 1989, Oper. Res..

[7]  John Knox,et al.  Tabu search performance on the symmetric traveling salesman problem , 1994, Comput. Oper. Res..

[8]  Fred Glover,et al.  Tabu Search and Adaptive Memory Programming — Advances, Applications and Challenges , 1997 .

[9]  Martin Zachariasen,et al.  Tabu Search on the Geometric Traveling Salesman Problem , 1996 .

[10]  N. Biggs THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization , 1986 .

[11]  Jon Jouis Bentley,et al.  Fast Algorithms for Geometric Traveling Salesman Problems , 1992, INFORMS J. Comput..

[12]  Andrew J. Davenport,et al.  GENET: A Connectionist Architecture for Solving Constraint Satisfaction Problems by Iterative Improvement , 1994, AAAI.

[13]  Éric D. Taillard,et al.  Robust taboo search for the quadratic assignment problem , 1991, Parallel Comput..

[14]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[15]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[16]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[17]  Patrick Prosser,et al.  Solving Vehicle Routing Problems Using Constraint Programming and Metaheuristics , 2000, J. Heuristics.

[18]  Bernd Freisleben,et al.  A genetic local search algorithm for solving symmetric and asymmetric traveling salesman problems , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[19]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[20]  Edward Tsang,et al.  Solving constraint satisfaction problems using neural networks , 1991 .

[21]  King-Tim Mak,et al.  A modified Lin-Kernighan traveling-salesman heuristic , 1993, Oper. Res. Lett..

[22]  Patrick Prosser,et al.  Guided Local Search for the Vehicle Routing Problem , 1997 .

[23]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[24]  Jeffery L. Kennington,et al.  Interfaces in Computer Science and Operations Research , 1997 .

[25]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[26]  Edward P. K. Tsang,et al.  Foundations of constraint satisfaction , 1993, Computation in cognitive science.

[27]  Paul Morris,et al.  The Breakout Method for Escaping from Local Minima , 1993, AAAI.

[28]  Edward W. Felten,et al.  Large-step markov chains for the TSP incorporating local search heuristics , 1992, Oper. Res. Lett..

[29]  Toby Walsh,et al.  Proceedings of AAAI-96 , 1996 .

[30]  G. Laporte The traveling salesman problem: An overview of exact and approximate algorithms , 1992 .

[31]  Richard W. Eglese,et al.  Operational Research Tutorial Papers , 1990 .

[32]  Cecilia R. Aragon,et al.  Optimization by Simulated Annealing: An Experimental Evaluation; Part II, Graph Coloring and Number Partitioning , 1991, Oper. Res..

[33]  David S. Johnson,et al.  Local Optimization and the Traveling Salesman Problem , 1990, ICALP.

[34]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[35]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[36]  Eugene L. Lawler,et al.  The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization , 1985 .

[37]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[38]  Victor J. Rayward-Smith,et al.  Modern Heuristic Search Methods , 1996 .

[39]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[40]  I H Osman,et al.  Meta-Heuristics Theory and Applications , 2011 .

[41]  G. Reinelt The traveling salesman: computational solutions for TSP applications , 1994 .

[42]  C. Voudouris,et al.  Partial Constraint Satisfaction Problems and Guided Local Search , 1996 .

[43]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[44]  Giovanni Manzini,et al.  Perturbation: An Efficient Technique for the Solution of Very Large Instances of the Euclidean TSP , 1996, INFORMS J. Comput..

[45]  F. Glover Tabu Search Fundamentals and Uses , 1995 .

[46]  G. Croes A Method for Solving Traveling-Salesman Problems , 1958 .

[47]  Bart Selman,et al.  Domain-Independent Extensions to GSAT : Solving Large StructuredSatis ability , 1993 .

[48]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[49]  Catherine A. Schevon,et al.  Optimization by simulated annealing: An experimental evaluation , 1984 .